Recognizing biased reasoning: Conflict detection during decision-making and decision-evaluation

Eva M. Janssen, Samuël B. Velinga, Wim de Neys, Tamara van Gog

Abstract

Although it is well established that our thinking can often be biased, the precise cognitive mechanisms underlying these biases are still debated. The present study builds on recent research showing that biased reasoners often seem aware that their reasoning is incorrect; they show signs of conflict detection. One important shortcoming in this research is that the conflict detection effect has only been studied with classic problem-solving tasks, requiring people to make a decision themselves. However, in many reasoning situations people are confronted with decisions already made by others. Therefore, the present study (N = 1591) investigated whether conflict detection occurs not only during reasoning on problem-solving tasks (i.e., decision-making), but also on vignette tasks, requiring participants to evaluate decisions made by others. We analyzed participants' conflict detection sensitivity on confidence and response time measures. Results showed that conflict detection occurred during both decision-making and decision-evaluation, as indicated by a decreased confidence. The response time index appeared to be a less reliable measure of conflict detection on the novel tasks. These findings are very relevant for studying reasoning in contexts in which recognizing reasoning errors is important; for instance, in education where teachers have to give feedback on students' reasoning.

1. Introduction

Every day, people make countless decisions, and the vast majority is made effortlessly, without deliberate thought. This is highly adaptive because we would be exhausted if we had to think through each and every decision and, moreover, it usually yields good decisions. Yet, it can also lead to biases in reasoning (Kahneman, 2011; Stanovich, West, & Toplak, 2016). Biases are systematic errors in people's thinking and violate the normative rules of rationality as set for instance by logic or probability (Stanovich et al., 2016; Tversky & Kahneman, 1974). For example, consider the following reasoning task:

In a study 1000 people were tested. Among the participants there were 5 dentists and 995 rock singers. Stan is a randomly chosen participant of the study.

Stan is 36. He married his college sweetheart after graduating and has two kids. He doesn't drink or smoke but works long hours.

What is most likely?

Stan is a dentist.

Stan is a rock singer.

Because the description of Stan fits with people's stereotype of a dentist, most people indicate that Stan is most likely a dentist (cf. 80% in a university student sample, see De Neys, Cromheeke, & Osman, 2011; and 60% in a North-American Mechanical Turk sample, see Frey, Johnson, & De Neys, 2018). According to principles of statistical probability, however, this conclusion is not correct. The description of Stan indeed fits the image of a dentist, but could also apply to a rock singer. Importantly, since the large majority of the study's participants are rock singers it is much more likely that Stan is a rock singer than a dentist. The bias in this conclusion is referred to as “base-rate neglect”, and base-rate neglect tasks such as this one are illustrative of the classic “heuristics-and-biases tasks”. These tasks are widely used to demonstrate that human judgment is often based on fast intuitions or “heuristic” thinking rather than on more deliberate reasoning (Kahneman, 2011). In the example, people tend to make a probability estimation based on a representativeness heuristic telling them whether the description is more representative of a dentist or rock singer, which leads to a statistical base-rate neglect bias in their estimation.
Decades of reasoning and decision-making studies have proven that people typically perform very poorly on a wide range of heuristics-and-biases tasks (Evans & Over, 1996; Kahneman, 2011). Biases are inherent to human cognition and often relatively innocent. However, there are also many situations in which biased decisions can have serious consequences. For example, when a judge misinterprets evidence based on intuitive stereotypical associations (Eberhardt, Davies, Purdie-Vaughns, & Johnson, 2006; Thompson & Schumann, 1987), when a doctor makes a diagnostic error due to exposure to popular media information about a disease (Schmidt et al., 2014), when investors make bad investment decisions based on the mere familiarity of a stock (Oster & Koesterman, 2013), or when parents decide not to vaccinate their children because of rare but highly publicized instances in which vaccines have failed (Smith, 2017). Therefore, it is important to understand when and why our reasoning is biased.

Although it is well established that our thinking can often be biased, the precise cognitive mechanisms underlying these biases are still debated. Until recently, influential scholars in the field suggested that most people perform poorly on heuristics-and-biases tasks because they do not recognize that their intuitive heuristic response is at conflict with logical or probabilistic principles (Evans & Stanovich, 2013; Kahneman, 2011). Put differently, it was assumed that biased reasoners are completely unaware of the error in their reasoning. Interestingly, however, recent studies have started to show that, even though they make a biased decision, most biased reasoners do show at least some sensitivity to the conflict between their heuristic response and logical considerations (De Neys & Pennycook, 2019). These studies typically compared participants’ responses on reasoning tasks that – as in the “Stan” task above – prime a heuristic response which is incongruent with logical principles (i.e., conflict tasks) to participants’ responses on tasks that prime a heuristic response which is congruent with the logical principles (i.e., no-conflict tasks). A no-conflict version of the “Stan” task above would refer to a study sample of 995 dentists and 5 rock singers, so that the most likely option is congruent with the prompted stereotype. In other words, conflict and no-conflict tasks trigger the exact same heuristic response, namely that Stan is a dentist, but only on the no-conflict task is this heuristic response also the correct response. Not surprisingly, almost everyone solves no-conflict tasks correctly (De Neys et al., 2011; Frey et al., 2018).

Interestingly, even though most people give the same heuristic responses to both conflict tasks and no-conflict tasks, they process the two tasks differently. People take significantly longer to enter their incorrect heuristic response on conflict tasks than they do to enter their correct heuristic response on no-conflict tasks (e.g., Bonner & Newell, 2010; De Neys & Glumicic, 2008). They are also less confident about their incorrect responses to conflict tasks, compared to their correct responses to no-conflict tasks (e.g., De Neys et al., 2011; Gangemi, Bourgeois-Gironde, & Mancini, 2015). In other words, biased reasoners show sensitivity to the logical conflict. This conflict detection effect, as indicated by confidence ratings and response times, has been found across a wide variety of classic heuristics-and-biases tasks (Bago & De Neys, 2017; De Neys, 2014; Frey et al., 2018; Mevel et al., 2015; Pennycook, Fugelsang, & Koehler, 2015; Stupple, Ball, & Ellis, 2013), although there are also studies that found no evidence for conflict detection (Ferreira, Mata, Donkin, Sherman, & Ilmhe, 2016; Mata, Ferreira, Voss, & Kollei, 2017; Pennycook, Fugelsang, & Koehler, 2012).

Despite the increasing number of studies showing that biased reasoners show sensitivity to their reasoning errors, research on the conflict detection effect is still in its formative stages and the effect requires further investigation (De Neys, 2012, 2014; De Neys & Pennycook, 2019). One important shortcoming is that the conflict detection effect has only been studied with classic heuristics-and-biases tasks, like the base-rate neglect task above. This is problematic because, in the end, we want to know how biased reasoning occurs in everyday situations and – while effective for demonstrating bias – these classic tasks are arguably rather artificial (Pollitzer, Bosc-Mine, & Sander, 2017; Prado, Léone, Epinat-Duclos, Trouche, & Mercier, 2020). For example, judging whether a person is most likely a dentist or rock singer is quite far removed from important real-world decisions with far-reaching consequences.

Moreover, in classic heuristics-and-biases tasks, participants are always instructed to make a particular decision themselves, whereas, in everyday situations, we are also confronted quite often with biased conclusions or decisions made by others. For example, when reading news articles, people are not asked to actively reason about the likelihood of a particular situation, but are confronted with a likelihood estimation made by someone else. When that estimation confirms a reader’s own intuitive ideas, recognizing that it is biased is arguably just as difficult as making the estimation yourself. This ability to detect biases in texts reflecting the reasoning of others is important in daily life. For example, when interpreting and analyzing interpreting arguments from activists or politicians on societal issues such as vaccines or climate change. Also, many professional contexts require people to be able to detect biases in reasoning of others. For instance, in medicine where physicians often see patients after a referral and initial diagnosis by another doctor (Van den Berge et al., 2012), in education where teachers have to detect and give feedback on biases in their students’ reasoning (Janssen et al., 2019), or in justice where judges and lawyers have to interpret and weigh arguments of the prosecutors and the accused (Thompson & Schumann, 1987).

Thus, to improve our understanding of biased reasoning, it is important to establish whether people would detect biased reasoning in decisions of others, and if not, whether they show signs of conflict detection. Detecting a conflict in your own versus another person’s decision might involve similar cognitive mechanisms. In this case, failing to detect bias in reasoning of others would occur as frequently as failing to avoid bias in people’s own reasoning, and, moreover, a similar conflict detection effect might apply. However, it could also be the case that the underlying mechanisms differ. For instance, research into argumentation suggests that people become more deliberative and critical to biases when they have to judge the argumentation of others than when they themselves have to make a judgment (Mercier & Sperber, 2011; Trouche, Johansson, Hall, & Mercier, 2016). Furthermore, Mata, Fiedler, Ferreira, and Almeida (2013) showed that some people become better at detecting biases when they are judging others’ reasoning than when they are judging reasoning without any reference to another person. If this is the case, then people would be more likely to detect biases in reasoning of others than in their own, and possibly show stronger signs of conflict sensitivity in case they do not accurately detect others’ bias. On the other hand, people typically agree with conclusions confirming their own ideas and beliefs (Markovits & Nantel, 1989; Thompson & Evans, 2012). Thus, if someone else’s conclusion is in line with their own intuitive ideas and the related decision does not directly affect them, people might be less motivated to pay attention to someone else’s reasoning. In that case, people would be less likely to detect biases in reasoning of others than in their own or to show signs of conflict detection.

1.1. The present study

In sum, many previous studies have shown that people not only make biased decisions on classic heuristics-and-biases problems, but also in a wide range of other, more realistic, reasoning scenarios (e.g., Janssen et al., 2019; Mata et al., 2013; Mercier & Sperber, 2011; Schmidt et al., 2014; Thompson & Schumann, 1987; Trouche et al., 2016). It has not yet been investigated whether biased reasoners also show signs of conflict detection in reasoning scenarios other than the classic heuristics-and-biases problems. Therefore, it is both theoretically and practically relevant to also start investigating conflict detection processes in a broader range of reasoning scenarios. The present study served as a first step in this direction by investigating reasoning accuracy and the conflict detection effect not only in decision-making but also in decision-evaluation tasks. Similar to the classic heuristics-and-biases-tasks, our
problem-solving tasks required participants to make a decision about the probability of an event themselves, whereas our novel vignette tasks required participants to evaluate decisions on probability made by others that were described in short texts. The context or framing of both the problem-solving tasks and the vignette tasks differed from the classic heuristics-and-biases tasks in the sense that they described longer and more complex situations, in which the required reasoning was always relevant for achieving a particular goal. The study was explorative in nature; as mentioned earlier, it is hard to make a priori predictions on whether reasoning accuracy and conflict detection would differ or not between decision-making and decision-evaluation. Also note that our main goal was not to draw a direct comparison between conflict detection during decision-making versus decision-evaluation. Given that the conflict detection effect has already been demonstrated convincingly for decision-making on problem-solving tasks, the main goal of this study was to establish whether the conflict detection effect is also observed during decision-evaluation on vignette tasks. We used confidence ratings and response times as indices of conflict detection (e.g., De Neys, 2014; Frey et al., 2018; Pennycook et al., 2015). A lower confidence and longer response time on incorrectly performed conflict tasks relative to correctly performed no-conflict tasks would point to conflict detection.

2. Method

2.1. Participants

In total, 160 native Dutch-speaking participants were recruited on Prolific Academic (www.prolific.ac) and paid £7.75 for participation. One participant had to be excluded due to a technical error, leaving a final sample of 159 participants (108 males) with an average age of 26.9 years ($SD = 9.2$). In terms of educational background, 73.0% of the participants reported having obtained a higher education degree or being enrolled to obtain this degree, 9.4% a vocational education degree, and 17.6% a secondary education degree.

2.1.1. Data statement

All data and the analysis script are stored on an Open Science Framework (OSF) page for this project, see https://osf.io/k7uh5.

2.2. Materials

We designed a total of 24 new reasoning tasks in Dutch, based on classic base-rate and conjunction tasks (De Neys et al., 2011; Frey et al., 2018). Section 1 in the Supplementary Materials provides an example and explanation of a classic conjunction task. Reasoning in a decision-making format was measured with six base-rate problem-solving tasks and six conjunction problem-solving tasks. From now on, we refer to these tasks as “base-rate problems” and “conjunction problems”, respectively. Reasoning in a decision-evaluation format was measured with six base-rate vignette tasks and six conjunction vignette tasks. From now on, we refer to these tasks as “base-rate vignettes” and “conjunction vignettes”, respectively. For the base-rate and conjunction problems, participants had to reason about probability estimation themselves (i.e., decision-making). For the base-rate and conjunction vignettes, on the other hand, the participants’ job was to evaluate the probability estimation made by someone else (i.e., decision-evaluation). In addition, both the problems and vignettes differed on other aspects from the classic heuristics-and-biases tasks. Whereas classic tasks typically described short and simple situations in which the reasoning was quite far removed from real-world decisions (e.g., deciding whether Stan is a dentist or whether Jon plays in a rock band), the current tasks described longer and more complex situations in which the required reasoning was always relevant for achieving a particular goal (e.g., tackling companies committing fraud or deciding whether soups are likely to contain dangerous additives).

2.2.1. Base-rate problems

Three out of the six base-rate problems were conflict problems: the description and base-rates cued conflicting responses. The other three were no-conflict problems in which the description and base-rates cued the same response. A translated example of a base-rate problem in conflict version is:

The Dutch government has recently made tackling fraud by companies one of the police’s priorities. The police have received a list of 1000 companies that may be committing fraud. Further investigation has shown that 8 of these companies have committed fraud and that the remaining 992 companies have not committed fraud. However, certain information was lost during a reorganization. The police no longer know which companies have committed fraud. Van Been Ltd is a randomly chosen company that is on the police’s list.

Van Been Ltd has a closed and competitive corporate culture. Its employees put a lot of effort into making big profits. The annual report also shows that the company has made a remarkably high profit in the past year. There is also a strikingly high number of fines that employees have received in company cars.

What is most likely?

Van Been Ltd committed fraud.

Van Been Ltd did not commit fraud.

As in the classic base-rate tasks, the narrative description was designed to cue an intuitive response based on a stereotype that is at odds with the base-rate information. All base-rate problems had the same underlying structure of about the same word length, but a different cover story. Each problem started with a sentence that introduced a particular situation, followed by two sentences including base-rate information, a sentence with additional information explaining the current situation, and a sentence introducing a randomly selected individual case. In the next paragraph, specific information about the selected individual case was presented, after which the participant had to indicate which of two possible situations was most likely. To construct a no-conflict version, we simply changed the sentence including the base-rate information, so that the intuitively cued response was in line with the statistically most likely option (e.g., “Further investigation has shown that 992 of these companies have committed fraud and that the remaining 8 companies have not committed fraud”).

2.2.2. Base-rate vignettes

Three out of the six base-rate vignettes were conflict vignettes, meaning that the heuristic decision by the other was at conflict with the base-rate mentioned in the task. The other three were no-conflict vignettes, meaning that the heuristic decision by the other was in line with base-rate mentioned in the task. Here is an example of the earlier base-rate conflict problem in vignette format:

The Dutch government has recently made tackling fraud by companies one of the police’s priorities. The police have received a list of 1000 companies that may be committing fraud. Further investigation has shown that 8 of these companies have committed fraud and that the remaining 992 companies have not committed fraud. However, certain information was lost during a reorganization. The police no longer know which companies have committed fraud. One of the
companies on the list, Van Been Ltd, stands out for the police because of a strikingly high number of fines that employees have received in company cars. Van Been Ltd has a closed and competitive corporate culture. Its employees put a lot of effort into making big profits. The annual report also shows that the company has made a remarkably high profit in the past year. The police have decided to start an official investigation into the company, because they estimate it more likely that Van Been bv has committed fraud than that Van Been bv has not committed fraud.

Is the estimation on which the police have based its decision correct?

Yes.
No.

As the example indicates, the base-rate vignettes were very similar to the base-rate problems, but differed on three aspects. First, instead of just presenting information about a randomly chosen individual case, the story explained that one individual case had caught the attention of one of the actors in the story. Second, a sentence was added in which the actor estimated the likelihood of two possible situations, on which a specific decision was based. Third, instead of indicating which of the two possible situations was most likely, participants had to indicate whether the estimation on which the actor’s decision was based, was correct. No-conflict versions were again constructed by switching the base-rate information.

2.2.3. Conjunction problems

Of the six conjunction problems, three were again conflict problems and three were non-conflict problems. An example of a conjunction problem in conflict version is:

In the past year, the Dutch Food and Consumer Product Safety Authority has investigated 10 brands of tomato soup to determine whether these contained dangerous additives or not. Immediately after the investigation, Heinz removed all its tomato soups from the store shelves, according to the company itself in order to improve the taste of the soup.

What is most likely?
Heinz wanted to improve the taste of the soup.

Heinz wanted to improve the taste of the soup and the soup contained dangerous additives.

The conflict above emerges because the cued stereotype, the soup contained dangerous additives, is in the conjunctive answer option. Yet logically, the conjunction of any two probabilities can never be more likely than either of the conjuncts in isolation, formally: \(p(A\&B) \leq p(A), \ p(B) \). In other words, the probability of Heinz wanting to improve the taste plus the soup containing dangerous additives can never be greater than merely the probability of Heinz wanting to improve the taste of the soup. Each problem had about the same word length and was structured as follows: It started with a sentence that introduced a particular situation. Next, an action by a person or institution was described. The person or institution always provided an unlikely explanation for this action, after which participants had to indicate which of two possible situations in the answering option was most likely.\(^2\) Following Frey et al. (2018), to construct a no-conflict version we changed the person’s or institution’s provided unlikely explanation into a likely explanation. For example: “Immediately after the investigation, Heinz removed all its tomato soups from the store shelves, according to the company itself because the soup contained dangerous additives”. Next, we replaced the unlikely explanation in the non-conjunctive answering option with the likely explanation. For example:

What is most likely?

The soup contained dangerous additives.

The soup contained dangerous additives and Heinz wanted to improve the taste of the soup.

2.2.4. Conjunction vignettes

Three out of the six conjunction vignettes were conflict vignettes and three were non-conflict vignettes. The vignette format of the conflict problem above is:

In the past year, the Dutch Food and Consumer Product Safety Authority has investigated 10 brands of tomato soup to determine whether these contained dangerous additives or not. Immediately after the investigation, Heinz removed all its tomato soups from the store shelves, according to the company itself in order to improve the taste of the soup. However, according to an investigative journalist of the Volkskrant [Dutch newspaper], it is more likely that Heinz not only wanted to improve the taste of the soup but that the soup also contained dangerous additives.

Is the estimation of the investigative journalist of the Volkskrant correct?

Yes.
No.

As the example indicates, the conjunction vignettes differed from the conjunction problems on two aspects. First, a sentence was added in which a new actor was introduced (e.g., an investigative journalist), who made a decision about the likelihood of two possible situations. Second, instead of indicating which of two possible situations was most likely (cf. problem-solving tasks), participants had to evaluate whether the decision of the actor was correct. The no-conflict versions were created by changing the unlikely explanation provided by a person or institution into a likely explanation, and by changing the decision of the new actor into a probability estimation of a conjunctive situation in which an unlikely explanation was added to the likely explanation. For example, “However, according to an investigative journalist of the Volkskrant, it is more likely that the soup not only contained dangerous additives but that Heinz also wanted to improve the taste of the soup”. In each vignette, the actor judged the conjunctive situation as more likely than the non-conjunctive situation. Hence, the actor was always incorrect.

2.2.5. Filler tasks

In addition to the 12 problem-solving tasks and 12 vignette tasks, four filler tasks were presented about halfway through to make the tasks of interest less repetitive and predictable. These were problem-solving tasks in which participants had to find the correct day of the week (cf. Schmeck, Opfermann, Van Gog, Paas, & Leutner, 2015; Van Gog, Kirschner, Kester, & Paas, 2012). For example:

Suppose today is Friday.

What day is it the day after the day before yesterday?

2.2.6. Task sequence

Participants completed a total of 28 tasks grouped in five blocks. The
first two blocks were always vignette tasks: a block of six base-rate vignettes (three conflict, three no-conflict) and a block of six conjunction vignettes (three conflict, three no-conflict). The order of these two blocks was randomized and the order of the six vignettes within each block was also randomized. Hereafter, participants completed a block with the four filler tasks. The final two blocks were always problem-solving tasks: a block of six base-rate problems (three conflict, three no-conflict) and a block of six conjunction problems (three conflict, three no-conflict). Again, the order of the two blocks and of the six problems within each block was randomized. The vignette tasks were administered first because our main goal was to establish whether conflict detection would occur during decision-evaluation. Therefore, we wanted to ensure that participants’ reasoning evaluation processes were not influenced by prior exposure to problem-solving tasks. We counterbalanced the content of the reasoning tasks across task format and conflict version.

2.2.7. Response time

On each task, participants’ response time was logged from the moment the task was presented on the screen until the participant clicked on one of the two multiple-choice answering options.

2.2.8. Confidence

Immediately after submitting their task responses, participants had to indicate how confident they were that their answer to the reasoning task was correct. Their confidence was measured in percentages from 0% (not at all confident) to 100% (completely confident) that increased in steps of 5%.

2.2.9. Confidence response time

Note that when initially designing our study, in line with Johnson, Tubau, and De Neys (2016), we also aimed to measure participants’ confidence response times. For each confidence rating, we logged the time it took participants to rate their confidence (i.e., the interval between the presentation of the scale and the moment they clicked a button). As such, the conflict-detection index appeared unreliable. Since two recent studies also found this index to be unreliable and cautioned against its use (Frey et al., 2018; Srol & De Neys, 2019) we decided to refrain from basing any conclusions on it. For completeness and parsimony, the analyses of this index are presented in the Supplementary Materials in Section 3.

2.3. Procedure

The experiment was run online. All materials were presented in Gorilla software (Anwyl-Irvine, Masson, Flitton, Kirkham, & Evershed, 2020). Participants were instructed that the study would take up to 45 min and demanded their full attention. After giving informed consent, participants were presented with general instructions on how the experiment should be displayed (full screen and notifications off). Next, an attention check was conducted to see whether the participants had read the full instruction, followed by some demographic questions (age, gender, and educational background). Hereafter, a short reading comprehension test was implemented to check for anomalies in reading speed or comprehension (adopted from Taalblad.be, Van Kelecom, 2017). None of the participants was excluded based on the reading test. To familiarize participants with the confidence measure, they were given three weekday problems (cf. filler tasks) as practice tasks. By varying the complexity on these tasks, we also got an indication of whether participants varied their confidence ratings accordingly, which was the case. Then, participants could start with the actual reasoning tasks. After finishing all blocks, one final attention check was administered to determine whether participants still answered the confidence measure attentively. Participants were presented a clearly false statement (“München is the capital of Germany”) and had to indicate whether this statement was correct or incorrect and give their confidence in their answer. Ninety-six percent answered correctly with an average confidence of 97.6%, SD = 7.6. Four percent answered incorrectly with an average confidence of 45.0%, SD = 49.7.

2.4. Data analysis

All analyses were performed using R version 4.0.0. and run separately for the base-rate and conjunction tasks. As outlined below, we fitted several mixed-effects models to the trial-level data. Mixed effect models can specify fixed and random effects. Fixed effects concern the variables of theoretical interest. Random effects define the assumptions that one makes about how sampling units vary (participants and test items), and the structure of dependency that this variation creates in one’s data (Barr, Levy, Scheepers, & Tily, 2013). In contrast to ANOVA, mixed effects models allow for defining multiple sources of clustering in the data. This advantage allowed us to account not only for participant variation but also for item variability in each model testing our research questions.

2.4.1. Item-level check

Because the tasks were new, we checked whether the content of the items’ cover stories influenced participants’ accuracy. We conducted mixed-effects logistic regression models on the base-rate and conjunction tasks with response accuracy (incorrect = 0; correct = 1) as dependent variable, with item-content number as fixed effect. Participants’ number, task format (problem-solving = 0; vignette = 1), and conflict version (conflict = 0; no conflict = 1) were specified as random effects (random intercepts). Item content did not tend to affect accuracy on the tasks (see Supplementary Materials, Section 2).

2.4.2. Accuracy

To get an overview of the overall performance, we calculated participants’ proportion of correct responses per task format and per conflict version. To test whether accuracy differed between task formats and conflict version, we conducted mixed-effects logistic regression models with response accuracy as dependent variable (incorrect = 0; correct = 1). Task format (problem-solving = 0; vignette = 1), conflict version (conflict = 0; no conflict = 1), and the interaction between these two were specified as fixed effects. Participant number and item-content number were specified as random effects (random intercepts).

2.4.3. Conflict detection

To provide an overview of the conflict-detection indices, we calculated participants’ average confidence (%) and response time (s) across their correctly and incorrectly performed trials, per task format and per conflict version. For both task formats, we tested for conflict detection effects using the conflict-detection indices. For these analyses, we followed the standard practice to only include participants who gave at least one biased (i.e., incorrect) response on conflict tasks (e.g., De Neys et al., 2011; Frey et al., 2018). We did not analyze the correctly performed conflict trials, as conflict detection measures on correctly performed conflict trials do not provide a pure indication of conflict detection efficiency per se (De Neys & Bonnefon, 2013). The few incorrectly answered no-conflict trials were also discarded from further analyses (i.e., it is hard to interpret these trials, since no-conflict trials

3 Note each task had four versions: a conflict problem-solving version, a no-conflict problem-solving version, a conflict vignette version, and a no-conflict vignette version. Participants completed 24 tasks, hence, there were 24 × 4 = 96 task versions in total.

4 The final sentence of the general instruction was: “On the next page you will be asked which button you have to press. Then press space bar.” On the next page, a next-button appeared along with the question “Which button do you have to press?” Participants who incorrectly clicked the next-button instead of pressing the spacebar were prompted to read the general instructions again.
cued heuristic responses which are congruent with correct performance).

Per task format, we conducted linear mixed-effect models on each conflict-detection index. Conflict version (conflict = 0; no conflict = 1) was entered as fixed effect and participant number and item-content number were entered as random effects (random intercepts). In all analyses using response times, we used log-transformed values. For ease of interpretation we report the raw response time values in the tables and the text. Finally, to see how large the conflict detection effects were, we calculated the difference between participants' confidence ratings or response times on incorrect responses to conflict tasks and on correct responses to no-conflict tasks. The reported group-level conflict detection effect sizes were calculated following a standard procedure (e.g., De Neys et al., 2011; Frey et al., 2018): we subtracted the average confidence/response times on biased participants' correctly solved no-conflict trials from the average confidence/response times on biased participants' incorrectly solved conflict trials.

3. Results

3.1. Reasoning accuracy

Table 1 presents an overview of participants' average reasoning accuracy on the base-rate and conjunction tasks. The table shows that, as expected, most participants performed poorly on the conflict tasks, whereas they performed well on the no-conflict tasks. This pattern applied to both bias tasks (conjunction and base-rate) and to both task formats (problems and vignettes). Correct solution rates were comparable to those obtained in previous studies (e.g., Frey et al., 2018).

The mixed-effects logistic regression models yielded a significant interaction effect between task format and conflict version on both bias tasks, base-rate: $B = -0.50, SE = 0.24, W = -2.05, p = 0.04$; conjunction: $B = -1.49, SE = 0.24, W = -6.18, p < .001$. The follow-up analyses reported in Table 2 show the effects of task format (decision-making versus decision-evaluation) on participants' reasoning accuracy. Task format effects differed per conflict version and per bias task. For base-rate tasks, task format did not affect performance on conflict tasks. For conjunction tasks, on the other hand, results showed that participants performed conflict tasks significantly better in vignette format than in problem-solving format. Interestingly, for both bias tasks, no-conflict versions were performed significantly better in problem-solving format than in vignette format.

Thus, with these novel reasoning tasks that described more complex and longer reasoning scenarios and included not only decision-making but also decision-evaluation, we found a similar performance pattern on conflict and no-conflict tasks as previously obtained on classic heuristic-and-biases tasks. With regard to the two reasoning formats, no-conflict tasks were performed better in problem-solving format than in vignette format. Conflict tasks, on the other hand, were either performed better in vignette than in problem-solving format (conjunction tasks) or performance did not significantly differ across task formats (base-rate tasks).

3.2. Conflict detection

Table 3 provides an overview of the average scores on the conflict-detection indices for correctly and incorrectly performed trials. The table shows that 135 out of the 159 participants gave at least one biased (incorrect) response to one of the conflict tasks. Furthermore, 159 9 9 participants gave at least one correct response to one of the no-conflict tasks. To investigate whether the biased participants showed signs of conflict detection, we contrasted their average confidence and response time on incorrectly performed conflict trials with that on correctly performed no-conflict trials. As the total number of biased participants differed per task format and per bias task (see Table 3), the sample sizes differed per analysis.

3.2.1. Confidence (%)

For the confidence conflict-detection index, we found that task format did not affect conflict detection effects on base-rate tasks, but it did on conjunction tasks. For both the base-rate problems and the base-rate vignettes, results showed that participants were significantly less confident about their performance on incorrectly performed conflict tasks than about their performance on correctly performed no-conflict tasks, problems: $\beta = 0.26, SE = 0.03, t(585.70) = 9.39, p < .001$; vignettes: $\beta = 0.25, SE = 0.03, t(575.02) = 8.11, p < .001$. They showed an average confidence decrease of 9.4 percentage points ($SD = 18.6$) on the problems and of 8.9 percentage points ($SD = 18.4$) on the vignettes. We will refer to this difference as the size of the conflict detection effect (De Neys et al., 2011; Frey et al., 2018). The additional model testing the effects of task format on the smaller sample (see footnote 5) suggested that these conflict effect detection effect sizes did not differ significantly, $\beta = -0.05, SE = 0.04, t(1272.86) = -1.45, p = .147$. However, a significant main effect of task format did reveal that participants were significantly more confident about their performance on vignettes than on problems on both conflict and no-conflict tasks, $\beta = 0.08, SE = 0.03, t(1277.64) = 2.40, p = .017$. For the conjunction tasks, we also found significant conflict detection effects for both task formats, problems: $\beta = 0.27, SE = 0.02, t(631.94) = 11.31, p < .001$; vignettes: $\beta = 0.13, SE = 0.03, t(553.63) = 4.34, p < .001$. However, the additional model including task format as predictor showed that the size of these conflict detection effects differed significantly across the two formats, $\beta =$

Table 1
Average accuracy proportion (SD) on the Base-rate and Conjunction Tasks.

<table>
<thead>
<tr>
<th></th>
<th>Base-rate tasks</th>
<th>Conjunction tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>0.39 (0.35)</td>
<td>0.26 (0.32)</td>
</tr>
<tr>
<td>No-conflict</td>
<td>0.90 (0.17)</td>
<td>0.89 (0.19)</td>
</tr>
<tr>
<td>Vignettes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflict</td>
<td>0.35 (0.32)</td>
<td>0.34 (0.29)</td>
</tr>
<tr>
<td>No-conflict</td>
<td>0.83 (0.24)</td>
<td>0.75 (0.27)</td>
</tr>
</tbody>
</table>

Table 2
Mixed-effects logistic regression models on reasoning accuracy for the Base-rate and Conjunction tasks.

<table>
<thead>
<tr>
<th></th>
<th>Base-rate tasks</th>
<th>Conjunction tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (SE)</td>
<td>-0.60 (0.21)</td>
<td>-1.23 (0.19)</td>
</tr>
<tr>
<td>Task format (SE)</td>
<td>-0.20 (0.15)</td>
<td>0.44 (0.15)</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item content variance (SD)</td>
<td>0.30 (0.55)</td>
<td>0.21 (0.46)</td>
</tr>
<tr>
<td>Participant variance (SD)</td>
<td>1.12 (1.06)</td>
<td>0.64 (0.80)</td>
</tr>
</tbody>
</table>

No-conflict tasks

<table>
<thead>
<tr>
<th></th>
<th>Base-rate tasks</th>
<th>Conjunction tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (SE)</td>
<td>2.46 (0.21)</td>
<td>2.55 (0.28)</td>
</tr>
<tr>
<td>Task format (SE)</td>
<td>-0.70 (0.20)</td>
<td>-1.18 (0.20)</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item content variance (SD)</td>
<td>0.06 (0.25)</td>
<td>0.40 (0.63)</td>
</tr>
<tr>
<td>Participant variance (SD)</td>
<td>0.56 (0.75)</td>
<td>0.77 (0.88)</td>
</tr>
</tbody>
</table>

Note. Task format: 0 = problems, 1 = vignettes. * $p < .05$. ** $p < .01$. *** $p < .001$.

5 For reasons of sample size, we did not first test for effects of task format in the main analyses (i.e., only participants who were biased on all conflict-detection indices and on both the problem-solving tasks and the vignette tasks could be included). However, we additionally ran these analyses on the smaller sample and report significant effects in the Results section.
accuracy (cf. Mevel et al., 2015; Pennycook et al., 2015). Third, we analyzed whether participants were consistent conflict detectors in the two studied task formats. Below, we summarize the results. The interested reader can find a complete overview of these results in the Supplementary Materials, Section 3.

3.3.1. Number of detectors
First, we analyzed how many of the biased reasoners showed conflict detection. Per conflict-detection index, on each task format of both bias tasks, we tallied the percentage of the biased reasoners showing the conflict detection effect, a reversed conflict detection effect, or no effect (i.e., no difference between conflict indices on conflict and no-conflict trials). Results on the confidence conflict-detection index showed that the vast majority of the biased reasoners showed conflict detection at the individual level too. This was the case for both tasks formats and both bias tasks (between 57.9% and 72.0% of the biased responders). About half of the biased reasoners (between 50.7% and 55.9%) showed conflict detection on the response time conflict-detection index. Interestingly, for the conjunction tasks, we additionally observed a difference between the two task formats with regard to the total number of conflict detectors. The percentage of conflict detectors on the confidence index was lower on the vignette format (57.9%) than on the problem-solving format (72.0%). The average effect size of both detection groups, however, did not differ between the two task formats (16.0% vs. 16.2%).

3.3.2. Accuracy correlations
Some previous studies found correlations between the conflict detection effect size and performance accuracy on conflict problems (Mevel et al., 2015; Pennycook et al., 2015). In line with those previous studies, we also calculated correlations between each individual’s conflict detection effect size and their total accuracy on the conflict tasks. The correlation analyses indicated that conflict detectors with larger confidence and response time effect sizes (i.e., larger difference on these measures between the incorrect conflict and correct no-conflict trials) were more likely to be correct on subsequent conflict tasks in that same block. These effects applied to both the problems and the vignettes of the conjunction tasks. For the base-rate tasks, however, we only found these effects on the vignettes, not on the problems.

3.3.3. Conflict detection consistency
Finally, given the similarity of conflict detection patterns across both task formats, one would expect that individuals who detected conflict on problem-solving tasks would also detect conflict on vignette tasks. To test this assumption, we used cross-tables and counted how many of the biased participants showed conflict detection across both task formats. According to all conflict-detection indices, there was a group of consistent detectors, who showed conflict detection on both the

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-Level Averages (SD) on Each of the Three Conflict-detection indices as a Function of Response Accuracy.</td>
</tr>
<tr>
<td>Conflict-detection index</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Base-rate problems</td>
</tr>
<tr>
<td>Participants by group</td>
</tr>
<tr>
<td>Average confidence (%)</td>
</tr>
<tr>
<td>Average response time (s)</td>
</tr>
<tr>
<td>Base-rate vignettes</td>
</tr>
<tr>
<td>Participants by group</td>
</tr>
<tr>
<td>Average confidence (%)</td>
</tr>
<tr>
<td>Average response time (s)</td>
</tr>
<tr>
<td>Conjunction problems</td>
</tr>
<tr>
<td>Participants by group</td>
</tr>
<tr>
<td>Average confidence (%)</td>
</tr>
<tr>
<td>Average response time (s)</td>
</tr>
<tr>
<td>Conjunction vignettes</td>
</tr>
<tr>
<td>Participants by group</td>
</tr>
<tr>
<td>Average confidence (%)</td>
</tr>
<tr>
<td>Average response time (s)</td>
</tr>
</tbody>
</table>

\[t(1288.58) = -3.81, p < .001 \]

The average conflict detection effect on conjunction problems was \(-10.1\% (SD = 14.3)\), whereas it was \(-5.2 (SD = 16.7)\) on conjunction vignettes.

Overall, the conflict detection findings on the new tasks in problem-solving format were fully consistent with previous studies using classic heuristics-and-biases tasks (e.g., Frey et al., 2018), who also found significant conflict detection effects with average sizes of \(-12.3\% for base-rate tasks and of \(-12.5\% for conjunction tasks). For the vignette format, we found a similar conflict detection effect on the base-rate vignettes and a smaller but significant effect on the conjunction vignettes.

3.2.2. Response time (s)

Results on the response time conflict-detection index were quite consistent across the two task formats and the two bias tasks. To all tasks applied that participants’ average response time on incorrectly performed conflict tasks was not significantly longer than on correctly performed no-conflict tasks, base-rate problems: \(\beta = -0.01, SE = 0.03, t(558.51) = -0.43, p = .668 \); base-rate vignettes: \(\beta = -0.001, SE = 0.03, t(557.82) = -0.05, p = .960 \); conjunction problems: \(\beta = -0.03, SE = 0.03, t(626.31) = -1.17, p = .243 \); conjunction vignettes: \(\beta = -0.02, SE = 0.03, t(511.78) = -0.54, p = .592 \). In other words, we found no significant conflict detection effects. The average difference in response times ranged from \(-0.6 (SD = 19.9)\) to \(1.7 (SD = 15.4)\). The additional models including task format (footnote 5) did not reveal any significant differences in conflict detection across tasks formats, only a main effect of task format for both the base-rate and conjunction tasks: participants took significantly longer to complete the vignettes than the problems (independent of conflict version), base-rate: \(\beta = 0.20, SE = 0.03, t(1260.30) = 6.81, p < .001 \); conjunction: \(\beta = 0.24, SE = 0.03, t(1281.59) = 8.71, p < .001 \). Note that this latter finding could be expected given that the vignettes were about twenty words longer than the problems.

These conflict detection results were not in line with previous studies (e.g., Frey et al., 2018, who did find significant conflict detection effects, with an average effect size of \(1.3 s\) and \(1.2 s\) for the base-rate and conjunction tasks, respectively).

3.3. Individual differences

Next to investigating whether conflict detection takes place at the averaged group level (cf. the analyses above), we also explored potential individual differences in conflict detection. First, we analyzed how many individuals actually showed the conflict detection effect (for a discussion on this, see Frey et al., 2018). Second, we tested whether the size of participants’ conflict detection effect correlated with their reasoning accuracy (cf. Mevel et al., 2015; Pennycook et al., 2015). Third, we analyzed whether participants were consistent conflict detectors in the two studied task formats. Below, we summarize the results. The interested reader can find a complete overview of these results in the Supplementary Materials, Section 3.
problem-solving tasks and on the vignette tasks, and a relatively small group of consistent non-detectors, who showed no sign of conflict detection in either of the two task formats. Surprisingly, most participants were inconsistent detectors (between 43.5% and 52.0% of biased responders), showing conflict detection on only one of the two task formats. For all conflict-detection indices on both bias tasks, there were more participants who detected conflict on the problem-solving tasks than on vignette tasks, although the differences were small.

4. Discussion

Thus far, research on conflict detection has studied this effect only during reasoning on classic problem-solving tasks, requiring people to make a decision themselves. However, people are also confronted quite often with decisions already made by others, requiring them to correctly evaluate these decisions. The aim of this study was to start investigating the conflict detection effect in a broader range of reasoning scenarios than studied before. To this end, we investigated reasoning accuracy and conflict detection not only in decision-making (problem-solving tasks) but also in decision-evaluation (vignette tasks).

4.1. Accuracy

In line with previously studied classic heuristics-and-biases tasks (e.g., Frey et al., 2018; Pennycook et al., 2015; Raioleison & De Neys, 2019; Thompson, Prowse Turner, & Pennycook, 2011), participants performed very well on the no-conflict versions of our tasks and performed quite poorly on the conflict versions. This applied to both bias tasks (base-rate and conjunction) and both task formats (problems and vignettes). Yet, there was an additional effect of task format on reasoning accuracy. No-conflict tasks were performed better when presented in problem-solving format than in vignette format; this applied to both bias task types. Conflict tasks were performed equally well in both task formats of the base-rate tasks, but, for the conjunction tasks, we found that conflict tasks were performed slightly better when presented in vignette format.

The higher performance on the no-conflict problem-solving tasks may simply indicate that participants improved due to the repeated task presentation, as the problem-solving tasks were always performed after the vignette tasks. Given that the vignette tasks were always completed before the problem-solving tasks, it is not possible that the better performance on these tasks resulted from a general repeated task presentation effect. Hence, this could indicate that, for the conjunction tasks, participants were better at recognizing someone else’s biased decision (vignette tasks) than at making an unbiased decision themselves (problem-solving tasks). This would align with the suggestion that people become more deliberative and critical when they have to judge the argumentation of others than when they themselves have to make a judgment (Mercier & Sperber, 2011; Trouche et al., 2016) or have to judge reasoning without specific reference to another person (Mata et al., 2013). Note, however, that the average difference in correct solution rates between the two task formats was not that large (i.e., 12%).

4.2. Conflict detection

With regard to conflict detection, the confidence index showed clear and consistent conflict detection effects whereas the response time index did not show any effects. For the confidence index, we found significant conflict detection effects on both base-rate and conjunction tasks in both problem-solving and vignette format. In line with many previous studies (Bugo & De Neys, 2017; De Neys et al., 2011; De Neys & Feremans, 2013; De Neys, Rossi, & Houdé, 2013; Gangemi et al., 2015; Thompson & Johnson, 2014), participants were, on average, less confident about their incorrect performances on conflict tasks than about their correct performances on no-conflict tasks. For the conjunction tasks, the results additionally showed that the conflict detection effect size on the vignette task format was significantly smaller than on the problem-solving task format. Interestingly, further individual differences analyses revealed that it was not so much the size of the conflict detection effect, but the total percentage of biased participants showing conflict detection, that differed between tasks formats. That is, the confidence effect size for both subgroups of conflict detectors was quite similar, but the percentage of conflict detectors on vignette tasks was smaller than on problem-solving tasks. In other words, fewer participants seemed aware of their errors when evaluating decisions of others than when making decisions themselves. Given that the vignette tasks were presented first, this could imply that participants needed multiple trials before they started to show conflict detection. However, it could also imply that – in addition to a group of participants who become more deliberate when evaluating other people’s decisions (cf. accuracy results) – there is another group of reasoners who become less motivated to pay attention to other people’s decisions when these do not directly affect them and are in line with their intuitive ideas. The latter implication seems to corroborate with findings by Mata et al. (2013), who found that a subgroup of their participants detected more biases and reasoned better when judging others’ responses compared to judging responses without reference to another person. Interestingly, however, another subgroup became worse when judging others’ reasoning (Mata et al., 2013). Only participants prone to the bias blind spot, which is tendency to believe that others are more prone to bias than they themselves (Pronin, Lin, & Ross, 2002), were better at judging others’ reasoning.

Looking at participants’ response times, we found no significant conflict detection effects. The lack of response time effects is in stark contrast with many previous studies (Bonner & Newell, 2010; De Neys & Glumicic, 2008; Pennycook, Trippas, Handley, & Thompson, 2014; Stupple & Ball, 2008). The most likely explanation for this seems to lie in the longer, more complex reasoning scenarios used in our tasks. In comparison with classic problems, average response times on the current tasks were very long and the variances were rather large. Hence, subtle differences in task processing could probably not reliably be captured with such response times. A potential solution might be to design shorter tasks or to apply a rapid-response paradigm in which the descriptive information is presented serially to obtain less noisy reasoning time measures (cf. Pennycook, Cheyne, Barr, Koehler, & Fugelsang, 2014). Note, however, that both solutions would render the tasks less similar to real-world reasoning situations, which was also of interest here. Future studies that consider conflict detection with longer or more complex tasks can best rely on confidence measures or investigate other potential measures of conflict detection (e.g., reasoning effort, or process measures obtained through eye-tracking).

4.3. Consistency in conflict detection

Taken together, the current results on the confidence measures suggest that conflict detection also occurs during reasoning on longer, more complex, and realistic reasoning tasks than studied before. In addition, the results indicated that the conflict detection effect was very similar during decision-making (problem-solving tasks) and decision-evaluation (vignette tasks), except for the finding that somewhat fewer participants were conflict detectors on the conjunction vignette tasks. The individual differences analyses also pointed to another potential effect of task format. Namely, the results on conflict detection consistency showed that most biased reasoners were inconsistent conflict detectors, that is, they detected conflict in only one of the two task formats. Both conflict-detection indices indicated that slightly more participants detected conflict on the problem-solving tasks than on the vignette tasks. Although the differences were small, these results could imply that conflict detection is fairly task-format or domain-specific (cf. Frey & De Neys, 2017; Srol & De Neys, 2019) and that it was slightly more challenging to detect conflict in vignette tasks. Alternatively, it could imply that some people are better conflict detectors during reasoning on their own decisions, whereas other people are better detectors during reasoning on others’ decisions. For instance, Mata et al.
(2013) found that individual differences in bias blind spot played a role in whether or not it was easier to evaluate another person’s reasoning. Future research could investigate whether and how such individual differences play a role in conflict-detection with different task formats.

4.4. Limitations

This study took a first step towards investigating conflict detection in more realistic scenarios and in evaluating other people’s decisions. However, some limitations need to be taken into account. First, since our main interest was to establish whether conflict detection occurs during decision-evaluation, all participants started with the vignette tasks and then completed the problem-solving tasks. Consequently, our findings concerning the direct comparison between the vignette tasks and the problem-solving tasks need to be interpreted with caution as we cannot rule out the effects of task sequence here. Second, there were multiple differences between our two task format conditions, again hindering a direct comparison between the two. Our goal was to make the decision-evaluation tasks as realistic and ecologically valid as possible. This necessarily implied making some changes. For example, the texts in our vignette tasks were somewhat longer because we had to add the description of someone else’s decision in each vignette task. In addition, instead of introducing a randomly chosen individual (cf. classical base-rate problems) the base-rate vignettes always explained that one individual case had caught the actor’s attention (i.e., more realistic reason to start a decision-making process). In order to draw a more direct comparison between conflict detection during decision-making and decision-evaluation, future studies could randomize the order of the vignette tasks and the problem-solving tasks. Furthermore, one could increase experimental control by reducing the multiple differences between the two task formats (e.g., equal text length, fully similar cover stories, etc.). Note, however, that while a focus on minimizing such condition differences may be positive for experimental control, it may not always be fruitful for gaining more insight into real-world reasoning processes. This brings us to a third potential limitation that also applies to the current study. That is, even though they differed in length somewhat, for reasons of experimental rigor all tasks were still similarly structured, well-structured, and included all necessary information to make an adequate probability estimation. In addition, on the vignette tasks, participants’ attention was always directed explicitly to the relevant reasoning part (i.e., they were explicitly asked whether a specific estimation in the text was correct or not). It would be fruitful for future research to start addressing conflict-detection indices in (gradually) more realistic (and therefore less structured) reasoning contexts (e.g., evaluating decisions of two people engaged in a dialogue without pointing to the relevant reasoning parts explicitly).

4.5. Conclusion

In conclusion, the present study suggests that conflict detection also occurs on longer, more complex reasoning tasks than the classic heuristic-and-biases problems studied before. Moreover, conflict detection occurs not only when making a decision oneself, but also when evaluating decisions of others (as described in a text). This is relevant because there are many everyday situations in which we are confronted with biased conclusions or decisions made by others and have to evaluate or form our own opinion on those decisions. Hence, these findings indicate that even if people may not detect biased reasoning in decisions of others, they often do show signs of conflict detection. The current findings are very relevant for studying reasoning in contexts in which recognizing errors is important; for instance, in medicine, where doctors often have to evaluate initial diagnoses of others, or in education, where teachers have to detect and give feedback on biases in their students’ reasoning. Even though people may err when evaluating others’ reasoning, there seems to be some error or conflict detection going on. One may envisage how future training could try to build on the currently demonstrated error signal to de-bias people’s evaluative reasoning.

Data statement

The dataset is stored on an Open Science Framework (OSF) page for this project, see https://osf.io/k7hus/?view_only=62f2947f60743b4aa55e6194c40355a (anonymized viewonly link for the purpose of review).

Declaration of competing interest

None.

Acknowledgements

This work was funded by the Netherlands Organization for Scientific Research under project number 409-15-203.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.actpsy.2021.103322.

References
