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Abstract

Convergent thinking, the ability to find a single optimal solution to a well-defined problem,
is considered a core component of creativity, and is often assumed to rely on controlled,
deliberative processes. We tested this assumption using the Compound Remote Associates (CRA)
test, where participants have to find a word that connects three seemingly unrelated words (e.g.,
“river, note, account”; solution: “bank”). We implemented a two-response paradigm wherein
participants provided an initial, intuitive response (under cognitive load and time constraints to
minimize deliberation), followed by a final, deliberate response. Our findings reveal that, in most
cases, extended deliberation was not necessary for sound thinking—correct final responses were
typically preceded by accurate intuitive responses produced under time pressure and cognitive load.
By using large language models and semantic network modeling, we found that items with a
smaller semantic search space are better solved intuitively, and that participants with a more
efficient and flexible semantic memory structure display higher intuitive performance on the CRA.
These results suggest that effective problem-solving in creative tasks may often rely on fast,
automatic associative processes within semantic memory, without necessarily requiring extended

deliberation.
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1. Introduction

Does sound thinking require deliberation, or can it emerge intuitively? Dual-process theories
have been highly influential in cognitive psychology, particularly in explaining biases and errors
in reasoning. According to popular dual-process accounts, human cognition results from a dynamic
interplay between fast and effortless, intuitive (“Type 1) processing and slower, more effortful,
deliberate (“Type 2”) processing (Evans & Stanovich, 2013; Kahneman, 2011; Stanovich & West,
2000). Although intuitive processes often cue valid responses, they rely on heuristic shortcuts that
can sometimes lead us astray. In contrast, deliberate processes allow individuals to detect and
correct erroneous intuitive responses. Traditionally, this view implies that sound thinking
essentially involves engaging deliberation to override initial misleading intuitions. Beyond
reasoning, dual-process frameworks have been applied to a wide range of cognitive domains,
including semantic illusions (Koriat, 2017; Mata et al., 2013), moral judgment (Bago & De Neys,
2019a; Greene & Haidt, 2002), prosocial behavior (Rand et al., 2012), and notably, creativity

(Allen & Thomas, 2011; Barr et al., 2014; Cassotti et al., 2016; Sowden et al., 2019).

However, recent dual-process studies in the reasoning field question the classic dual-process
conceptualization. In these studies, participants typically have to tackle logico-mathematical “bias”
problems, such as the well-known bat-and-ball task: “A bat and a ball together cost $1.10. The bat
costs $1 more than the ball. How much does the ball cost?” (correct answer: “5 cents”). The classic
dual-process assumption is that correct responding requires a deliberate evaluative phase in which
initial, intuitively cued solutions (e.g., “10 cents”) are corrected. To disentangle the distinct roles
of intuitive and deliberative processes, researchers have used a two-response paradigm (Thompson
et al., 2011). In the first, intuitive stage of this paradigm, participants are required to provide the

first answer that comes to their mind as quickly as possible. Immediately after, they have all the



time they want to deliberate and pick their final response. To ensure that the initial response does
not rely on deliberation, participants have to answer under time pressure while performing a
concurrent cognitive load task hampering their cognitive resources (Bago & De Neys, 2017). Given
that deliberation is assumed to require time and cognitive resources, these constraints minimize the

possibility that people engage in it.

Contrary to the predictions of the classic dual-process framework, results indicate that sound
reasoners are often able to produce correct responses in the initial, intuitive response stage where
deliberation is minimized (Bago & De Neys, 2017, 2019b; Buri¢ & Konradova, 2021; Buri¢ &
Srol, 2020; Raoelison et al., 2020; Thompson & Johnson, 2014). It has been argued that this
suggests that deliberate control processes might be less critical for sound thinking than generally
assumed (De Neys, 2023). Hence, sound reasoners may be primarily characterized by their ability
to intuit correctly rather than by their capacity to deliberately correct erroneous intuitions

(Raoelison et al., 2020; Reyna, 2012; Thompson et al., 2018).

Since the dual-process framework is often posited as a general model of human cognition
(Evans & Stanovich, 2013; Kahneman, 2011), we believe it is important to assess the
generalizability of these findings in other cognitive domains (e.g., Beucler et al., 2025; Voudouri
et al., 2023). Creativity provides an ideal domain for examining this question. Much like revised
reasoning-based dual-process models, recent creativity models appear more open to the possibility
of a greater role for intuition in the creative process. Evidence for such a role comes from studies
showing that people can often arrive at solutions intuitively, or at least recognize when problems
are solvable, without engaging in deliberate analysis. For instance, Topolinski and Strack (2009)
found that participants were able to distinguish solvable from unsolvable word triads based on

intuitive impressions. Similarly, research on insight problem-solving, when a solution emerges



suddenly with an “Aha!” experience, has shown that certain creativity problems can be solved
intuitively (e.g., Stuyck et al., 2022). Thus, recent theories in creativity research emphasize a
dynamic interplay between intuitive and deliberate processes (Benedek et al., 2023; Volle, 2018),
whereby bottom-up associative and top-down controlled processes continuously interact to

produce a creative solution.

To directly assess the extent of the role of deliberation in creative thinking, we adapted the
two-response paradigm to the Compound Remote Associates test (CRA; Bowden & Jung-Beeman,
2003). In this classic “convergent-thinking” task, participants are presented with three problem
words (e.g., river, note, account) and must find a fourth word that can be appended to each of the
three words to create three new meaningful compound words (e.g., riverbank, banknote, bank
account). Participants were required to provide their initial responses as quickly as possible while
under time pressure (8 seconds in Experiment 1; 6 seconds in Experiment 2) and concurrent
cognitive load (memorization of a 3x3 matrix in Experiment 1 and a 4x4 matrix in Experiment 2;
see Bago & De Neys, 2017, 2019a for validation). Subsequently, they were allowed to deliberate
and give their final responses. To ensure our items matched the difficulty level of previous studies,
we selected CRA items from Bowden and Jung-Beeman (2003) and conducted a pilot study to

confirm item difficulty.

Critically, our objective was twofold. First, we aimed to measure the extent of sound intuitive
thinking in the CRA. Here, sound intuitive thinking is defined in a strictly operational sense as the
production of a correct response at the initial response stage of the two-response paradigm, under
time pressure and concurrent cognitive load, regardless of the specific cognitive processes
involved. Second, we sought to explain how such correct intuitions arise by investigating the

underlying associative processes that may support them. Indeed, creative thinking is often assumed



to hinge on associative mechanisms that link remote concepts to generate novel ideas (Beaty &
Kenett, 2023; Kenett et al., 2014; Mednick, 1962; Rossmann & Fink, 2010). Such associative
dynamics are typically linked to intuitive, “Type 17 processes within the traditional dual-process
view of reasoning (Evans & Stanovich, 2013; Kahneman, 2011), though this simple mapping
between intuitive and associative processes is likely an oversimplification in the context of
creativity (Ovando-Tellez et al., 2024; Sowden et al., 2019). A key goal of the present work is to
empirically refine our understanding of the relationship between associative processes and intuitive

thinking.

Importantly, both item-level and individual-level factors may influence the ease with which
intuitive responses emerge. At the item level, prior work has shown the semantic similarity between
cue words and the solution word partly predicts performance in convergent-thinking tasks (Marko
et al., 2019). Semantic similarity refers to the proximity in meaning between two words or groups
of words. For example, in the CRA item “extinguisher, truck, camp”, the solution “fire” is
semantically close to the cues, whereas in “baby, spring, cap”, the solution “shower” is more

distant, making the item harder to solve.

At the individual level, creative performance has been linked to differences in how
knowledge is organized and accessed in semantic memory (e.g., Kenett et al., 2014, 2018; Luchini
et al., 2023). Semantic memory is often modeled as a network of interconnected concepts, in which
related concepts are closer and more densely interconnected than distant ones. Individual
differences in the structure of these semantic networks, such as higher connectivity or shorter paths
between concepts, are thought to underly greater creative performance. For some individuals,
concepts that are typically considered remote may thus be more closely interconnected in their

semantic memory networks, thereby reducing the reliance on deliberate processes. Complementing



this network-based view of semantic memory, recent work has emphasized the importance of
dynamic aspects of associative search. In particular, the forward flow measure was developed to
capture how efficiently individuals explore semantic space during free association (Gray et al.,
2019). A higher forward flow reflects greater movement through semantic space and has been

shown to predict creative performance (Beaty et al., 2021; Gray et al., 2019).

Together, these perspectives suggest that both problem structure and the organization and
dynamics of semantic memory determine whether solutions are reached intuitively or require
deliberation. To test this, we adopted recent advances in computational modeling of creativity
(Beaty & Kenett, 2023). At the item level, we examined whether semantic similarity between the
three cue words and the solution word of the problem (via word embeddings) predicted intuitive
versus deliberative solutions for each item. At the participant level, we investigated whether
individual differences in semantic memory structure and associative search dynamics help explain
why some individuals are more successful at intuitive problem solving. To this end, we combined
network modeling of a verbal fluency task to characterize the structure of semantic memory, and

the forward flow measure to index the dynamics of associative exploration during free association.

We conducted two experiments: Experiment 1 introduced the two-response paradigm to
identify the role of intuitive and deliberate processing in the CRA task. Experiment 2 validated the
results (with a tighter deadline and a more demanding cognitive load task to prevent any possible
residual deliberation, see Bago & De Neys, 2019a) and introduced the additional verbal fluency

task to model interindividual differences in semantic memory structure and exploration.



2. Methods

2.1. Transparency and Openness

The research question and study design were preregistered on the OSF platform (Experiment

1:  https://osf.io/32m7f/?view_only=3c11916744f8442ba3fad4e324035f7b;  Experiment 2:

https://osf.io/6147j/?view_only=a6bc40550fe04f6cb4220cd8d4f0141a). No specific analyses were

preregistered. All data, material, and analysis scripts can be retrieved from:

https://osf.io/gfsb8/?view_only=81b5433fef4040dc949332ed66aeb3cO.

2.2. Participants

Participants were native English speakers recruited on the Prolific platform

(www.prolific.com) and paid £6.00 per hour. Since we do not know of any previous studies

adapting the two-response paradigm with the CRA, we based our sample size choice on previous
studies using the two-response paradigm in the reasoning field (e.g., Bago & De Neys, 2017,
2019b). In Experiment 1, we recruited 100 participants (52 females, M age =37.3, SD = 13), among
which 32% reported High school, 49% reported a bachelor degree, 16% a master degree, and 3%
a PhD as their highest education level. In Experiment 2, we recruited 100 participants (47 females,
M age = 39, SD = 12.7), of which one participant did not report their demographic information.
Among the remaining participants, 2% reported less than High school, 27.3% reported High school,
45.5% reported a bachelor degree, 19.2% a master degree, and 6.1% a PhD as their highest

education level.


https://osf.io/32m7f/?view_only=3c119f6744f8442ba3fad4e324035f7b
https://osf.io/6f47j/?view_only=a6bc40550fe04f6cb4220cd8d4f0141a
https://osf.io/gfsb8/?view_only=81b5433fef4040dc949332ed66aeb3c0
https://www.prolific.com/

2.3. Compound Remotes Associates Test

In the CRA, participants are presented with three cue words (e.g., river, note, account) and
have to find a fourth solution word to combine with each of the cue words to form three new
meaningful compound words (e.g., riverbank, banknote, bank account). We initially selected
candidate items in Bowden and Jung-Beeman (2003), and we created additional items. The newly
created items enabled us to cover the whole range of item difficulty, while taking into account the
position of the solution word within the created compound words, which could either be at the
front, back or a combination of both (i.e., mixed). This preselection resulted in a list of 54 items,
of which 17 were new items. We conducted an independent online pilot study using the Prolific
platform (n = 50, 25 females, M age = 38.8, SD = 13.9) to ensure the validity and reliability of our
item selection by minimizing the occurrence of alternative correct or incorrect responses. Unlike
previous studies using the CRA, when multiple participants provided an alternative yet correct
answer, we included it as a valid alternative solution. The pilot study also enabled us to ensure that
the items covered a full range of difficulty (Easy: 98-80% accuracy, Medium: 64-46%, Hard: 26—
6%). This process resulted in a final selection of 24 items (M accuracy = 54.8%, SD = 29, range =
6%—-98%). Among our items, 9 were front-positioned, 6 were back-positioned, and 9 were mixed-
positioned items. The full item list with their solutions can be found in Appendix A. For each trial,
participants were presented with the three cue words and had to type their response before pressing
‘Enter’ to validate it. Appendix B details how we accounted for orthographic and typing mistakes,

as well as alternative correct responses.

In addition, although we did not preregister this criterion, we had to exclude one participant
in Experiment 1, because they consistently gave inappropriate responses to the CRA problems

(e.g., answering “basket” or “basketfootvolley” to the problem “basket/foot/volley”).
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2.4. Animal Fluency Task

We used the animal fluency task (Ardila et al., 2006), as it is the most widely used to estimate
semantic networks (Christensen & Kenett, 2023). Participants had 3 minutes to generate as many
animal names as possible. Participants had to type their response before pressing ‘Enter’ for each
new response and were reminded to keep working until the time was over. This task was only used

in Experiment 2. Appendix C provides the complete instructions for the animal fluency task.

2.5. Cognitive Load Task

To minimize deliberation in the initial stage of the two-response paradigm, we used the dot
memorization task (Miyake et al., 2001). This task has been shown to effectively burden executive
resources in verbal reasoning (e.g., De Neys & Verschueren, 2006; Verschueren et al., 2004). In
Experiment 1, the participants saw a 3 x 3 grid with four crosses before each CRA problem in the
initial stage of the paradigm (see Section 2.8.). After their first response, participants had to select
the correct pattern among four different load matrices. They then received feedback about whether
they selected the to-be-memorized matrix. The load task was only present during the initial

response stage, where deliberation was minimized.

In Experiment 2, we used the same load procedure as in Experiment 1, using a more
challenging five dot pattern in a 4 x 4 grid (e.g., Bialek & De Neys, 2017; Trémoli¢re & Bonnefon,
2014). This increased load has been shown to further burden the executive resources of participants

compared to the simpler load pattern used in Experiment 1 (Trémolicre et al., 2012).
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2.6. Deadline Calibration in the Initial Response Stage

2.6.1. Experiment 1

To calibrate an appropriate deadline for the initial stage of the two-response paradigm in
Experiment 1, we ran a traditional “one-response” version of the experiment (e.g., Bago et al.,
2021). We used the same material as in the two main experiments, but participants only had to give
a single answer without deadline or load. We recruited an additional online independent sample of
51 native English speakers on the Prolific platform (26 females, M age = 37.2, SD = 13.1). Similar

to Experiment 1, we excluded 2 participants who consistently misunderstood the CRA task.

Participants took on average 13.5 s (SD = 11.2 s) to give a correct answer in the CRA in the
one-response pre-test. The first quartile of the reaction times for the correct responses was 7.5 s.
Based on this result, we rounded up this value to the nearest integer to give participants some
minimal leeway and set the deadline at 8 s in Experiment 1. The screen turned yellow 2 s before

the deadline to remind participants of the incoming deadline and urge them to type their response.

To test whether participants were under time pressure in the initial stage of the two-response
paradigm, we contrasted reaction times between the initial stage of Experiment 1 (M =5 s, SD =
0.8 s) and the one-response pre-test (M =22.6 s, SD = 14.7 s). Because responses in Experiment 1
were subject to an 8 s deadline, we used a Bayesian censored (Tobit) log-normal mixed-effects
model, treating missed-deadline trials as right-censored rather than excluding them. Results
showed that responses in Experiment 1 were about 60% faster than in the one-response pre-test,

posterior reaction time ratio = 0.40, 95% Crl [0.36, 0.44], pd = 100%.
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2.6.2. Experiment 2

In Experiment 2, we used an even more stringent deadline to further minimize the possibility
that participants engaged in deliberation during the initial response stage. The new deadline was
calibrated based on the average initial response time from Experiment 1. For Experiment 2, we
consequently further decreased the deadline to 6 seconds, with the screen turning yellow at 5

seconds to remind participants to type their response.

To test whether the time pressure had increased between Experiment 1 and Experiment 2, we
contrasted the reaction times between the initial stage of Experiment 1 (M =5's, SD = 0.8 s) and
Experiment 2 (M =4 s, SD = 0.5). Once again, we used a Bayesian censored (Tobit) log-normal
mixed-effects model, treating missed-deadline trials in the two experiments as right-censored rather
than excluding them. Results showed that reaction times decreased by 17% in the initial response
stage of Experiment 2 compared to Experiment 1, posterior reaction time ratio = 0.83, 95% Crl

[0.79, 0.87], pd = 100%.

2.7.Final Response Confound

The one-response pre-test also allowed us to investigate whether providing two responses to
the same problem in the two-response paradigm biased participants’ answers. More specifically,
participants might aim to maintain consistency between their initial and final responses. This
consistency could potentially hinder them from correcting initial incorrect responses, artificially
reducing the accuracy of the final response stage. Conversely, it is also possible that participants’
accuracy in the final response stage of the paradigm could be boosted by having already responded

once to the same problem in the initial stage.
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To rule out these possibilities, we contrasted the accuracy of the final response stage of
Experiment 1 (M = 65.2, SD = 15.3) and Experiment 2 (M = 66.7, SD = 18.7) with the accuracy of
the one-response pre-test (M = 62.5, SD = 12.8) using mixed-effects logistic regressions including
random intercepts for participants and items. There was no significant difference between the one-
response pre-test and Experiment 1 (p = .76) nor Experiment 2 (p = .79), suggesting that the
repetition of the problems in the two-response paradigm did not influence performance in the final

response stage compared to the one-response pre-test.

2.8. Two-Response Paradigm Procedure

COTTAGE

o, |Yourecalled| gy|s5 | —~
oo o the correct CAKE

o COTTAGE | °, .| pattern!
o SWISS |+ 8 °
L CAKE

Figure 1. Time course of a two-response CRA trial (Experiment 2).

Appendix C provides the complete instructions and training procedure for the two-response
paradigm adaptation of the CRA. The general procedure was similar to Bago and De Neys (2017).
The experiments were run online on the Qualtrics platform. A fixation cross was displayed for 2 s
at the beginning of each trial. Subsequently, the load matrix was presented for 2 seconds.

Participants were then required to solve the CRA problem for the first time, with an allotted
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response time of 8 seconds in Experiment 1 (6 seconds in Experiment 2). After 6 seconds (5
seconds, respectively), the screen’s background turned yellow as a reminder of the impending
deadline. In cases where participants failed to respond before the deadline, they were prompted to

provide an answer within the deadline during subsequent initial trials.

Following their initial response, participants were also required to indicate their response
confidence by sliding a cursor with their mouse on a horizontal visual analog scale that gradually
transitioned from red (representing low confidence = 0) to green (representing high confidence =
100). Subsequently, following Stuyck et al. (2022), participants were tasked with reporting whether
they had arrived at a solution with insight or not, choosing between two options: “With Aha!” or
“Without Aha!” The instructions explicitly defined each solution type to ensure participants’
understanding, following Stuyck et al. (2022; see Appendix C). Following this, participants had to
select the correct, to-be-remembered load matrix from among four different matrices. If they were
unable to identify the correct load matrix, they were instructed to memorize the pattern correctly
in subsequent trials. Note that the confidence and insight questions were added for exploratory

purposes (see Appendix D for the results).

The CRA problem was then presented a second time, and participants could give their final
response without any deadline or concurrent load. Following this, the participants had to indicate
their confidence in their final response and whether they reached it through insight or not. In both
response stages, if participants did not provide an answer for the CRA problem, they were not

required to indicate response confidence or solution type.

The answer options appeared in green during the initial response stage and switched to blue
during the final response stage, serving as a visual cue to remind participants of the question stage

they were in. Additionally, a reminder sentence was placed beneath each question: “Please indicate
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your very first, intuitive answer” and “Please provide your final answer”, respectively. The full

procedure is depicted in Fig. 1.

2.9. Trial Exclusion

Following our preregistration criteria, we excluded trials when participants failed to provide
an initial response within the deadline or did not recognize the correct load matrix because for these
trials, we cannot be sure that participants did not deliberate in the initial response stage. This
accounted for 20.1% of the trials in Experiment 1 and 36.7% of the trials in Experiment 2. On
average, each participant contributed a total of 19.2 trials in Experiment 1 (SD =3.3) and 15.2 trials

in Experiment 2 (SD = 5.8) out of 24 trials.

2.10. Mixed-effects Models

We used (generalized) linear mixed models to analyze the CRA data, which process trial-
by-trial data while accounting for both participant and item variability. Appendix E outlines the
method used to find the optimal random structure for each analysis, how we assessed significance
across our models, and the contrast coding scheme we used based on the specific needs of each

analysis.

2.11. Semantic Similarity Measure

To compute semantic similarity, we used the “all-mpnet-base-v2”” model from the python
package “sentence-transformers” (Reimers & Gurevych, 2019). This transformer model captures
textual semantic information by ensuring that words or sentences that are semantically close to one

another will also be close in the internal vector space of the model. Specifically, each word (or
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group of words) is transformed into a vector representation (or word embedding) in a 768-

dimensional vector space.

This allows us to compute semantic similarity measures to assess how close words are to one
another in terms of meaning. Specifically, we transformed the three cue words (as a unique string)
and the solution word(s) into embeddings and then used cosine similarity to compute how close

the two resulting vectors were. Cosine similarity is computed as follows:

u-v (1)

sim(u,v) = ——
V) = = Tl

where u and v are the two vectors we want to compare.
2.12. Associative Thinking and Semantic Memory Structure Measures
2.12.1. Data preprocessing

Appendix B details how we pre-processed the animal fluency data to run our associative
thinking analyses in Experiment 2 using the SemNetCleaner package in R as described in

Christensen and Kenett (2023).
2.12.2. Forward Flow

To compute the forward flow measure for each participant, we used the same transformer
model for semantic embedding on the animal names provided by the participants in the additional
animal fluency task. We then computed forward flow over the chain of concepts generated by each

participant, as shown in Equation 2, following Gray et al. (2019):
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n -
1 ZiDy, 2
n—1 ( i—1 )
i=2

where D;j is the semantic distance between two words embeddings computed as 1 — cosine

similarity (from Equation 1) and # is the total number of words generated by the participant in the
animal fluency task. Equation 2 thus computes, for each newly generated animal, the average
semantic distance between this animal and every previously generated animal. It then computes the
mean of these averages to yield a synthetic measure of how efficiently the participant explores the

semantic space.

2.12.3. Semantic Network Estimations

To compute the semantic networks at the group level, we used the pipeline described in the
SemNa package tutorial (Christensen & Kenett, 2023). Because semantic network estimation from
fluency data involves substantial researcher degrees of freedom and there is no consensus on a
single “best” method (Zemla & Austerweil, 2018), we adopted a robustness strategy and applied
the four estimation methods available in the package: the Correlation-Based Network method, the
Naive Random Walk method, the Pathfinder Network method, and the Community Network

method (see Appendix F for construction details).

In line with Luchini et al. (2023), we then estimated semantic networks as a function of
intuitive performance in the CRA by using a median split to contrast the High “11” group vs the
Low “11” group semantic networks. Next, we tested whether the generated networks were
significantly different from random networks with the same number of nodes and edges for each
network metric. This led us to exclude the Community Network method, for which the metrics

consistently did not differ from those of randomly generated networks.
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We then compared the networks using case-wise bootstrap analysis. Because semantic
network metrics can depend on the estimation procedure and results did not always converge across
methods, we aggregated method-specific standardized effect sizes to summarize the overall
direction and magnitude of group differences across approaches, using meta-analytic procedures
for dependent effect sizes (Borenstein et al., 2021). Appendix F details the complete procedure for

the semantic network analysis.

3. Results

3.1. Quantifying Correct Intuitive Versus Deliberate Performance

Fig. 2a provides a summary of the initial and final accuracies for the two experiments. The
average accuracy was significantly lower in the initial response stage (Experiment 1: M = 48.3%,
SD = 14.5; Experiment 2: M = 49.8%, SD = 22.8) than in the final response stage (Experiment 1:
M =65.2%, SD = 15.3; Experiment 2: M = 66.7%, SD = 18.7). A mixed-effects logistic regression,
including random intercepts for items and random intercepts and slopes for response stage for
participants, revealed a significant effect of response stage on accuracy, OR = 1.89, p < .001,
Cohen’s d = 0.35, 95% CI [0.31, 0.39], but no significant effect of experiment (p = .74) nor of the
response stage by experiment interaction (p =.17). Thus, the results consistently show that although
deliberation helped, participants still managed to give a high number of correct responses in the

initial response stage where deliberation was minimized.
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Figure 2. By-subject and by-item performance analyses across response stages in Experiment 1
and Experiment 2. a) Response accuracy as a function of response stage, by subject. b) Proportion
of each direction-of-change category, by subject: “00” = incorrect initial and incorrect final
response; “01” = incorrect initial and correct final response; “10” = correct initial and incorrect
final response; “11” = correct initial and correct final response. In the boxplots, the lower and upper
hinges correspond to the first and third quartiles, the middle line shows the median, and the
whiskers extend to the smallest and largest values no further than 1.5 times the interquartile range.
Overlaid black dots represent the mean, and black error bars indicate standard errors of the mean.
¢) Distribution of the average non-correction rate across participants, by subject. d) Relationship
between final response accuracy and non-correction rate at the item level. Solid lines with shaded
ribbons show linear regression fits with 95% confidence intervals; the dashed line indicates the
identity line.

To better understand how deliberation affected participants’ responses, we performed a
direction of change analysis (Bago & De Neys, 2017). In each trial, participants can give either a
correct response (accuracy = 1) or an incorrect response (accuracy = 0) in the two response stages
(initial and final). This yields four possible directions of change: “00” (incorrect initial and

incorrect final response), “01” (incorrect initial and correct final response), “10” (correct initial and
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incorrect final response) and “11” (correct initial and correct final response). Fig. 2b summarizes

those results.

To obtain a straightforward measure of how “11” responses compared to “01” responses, we
computed the mean “non-correction rate” across our participants. This rate, expressed as the
proportion 11/(11+01) (Bago & De Neys, 2017), indicates the proportion of correct responses in
the final response stage that were already correct in the initial response stage. A high non-correction
rate indicates that most correct responses were already accurate in the initial response stage,
implying that participants did not require deliberation to arrive at the correct answer. The mean
non-correction rate was 72.7% (SD = 23.2) in Experiment 1 and 71.4% (SD = 23.2) in Experiment

2 (Fig. 2¢).

To statistically assess whether there was a higher occurrence of sound intuitive thinking
(“11”) as opposed to correct deliberate responses following an initial incorrect response (“017), we
focused exclusively on final correct responses, excluding “00” and “10” trials. We then built a
mixed-effects logistic regression model, which included random intercepts for both participants
and items, with the experiment as a fixed effect. We used a dummy variable to code whether a trial
was a “01” response (coded as 0) or a “11” response (coded as 1). The effect of experiment was
not significant (p = .36). Importantly, the estimated non-correction rates from the model were large
both for Experiment 1, M = 66%, 95% CI [53, 78] and Experiment 2, M = 63%, 95% CI [50, 76].
Thus, when participants gave a correct answer in the final response stage of the paradigm, they had

already given a correct answer in the initial response stage most of the time.

To assess the limits of sound intuitive thinking in the CRA, we examined how item difficulty
related to the likelihood of sound intuitive thinking (Fig. 2d). Item difficulty was operationalized

as the average accuracy for each item in the final response stage, providing an estimate of difficulty
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once participants were allowed to deliberate. We fitted linear regression models predicting the by-
item non-correction rate from by-item difficulty in each experiment. Results showed that item
difficulty was a strong positive predictor of the non-correction rate in both Experiment 1, 5 =0.79,
#(22)=9.84, p <.001, and Experiment 2, b = 0.75, #22) = 9.10, p <.001 (see Appendix G for the
full models). This suggests that as items became more challenging, the occurrence of sound
intuitive thinking (“11” responses) decreased relative to deliberate correction following an initial
error (“01” responses), which highlights a boundary condition for intuitive processing.
Consistently, item difficulty was also very strongly correlated with slower reaction times in the
final response stage, Experiment 1: #(22) = —.89, p < .001, 95% CI [-.95, —.75]; Experiment 2:
r(22) = =93, p < .001, 95% CI [-.97, —.85], indicating that harder items tended to elicit longer

deliberation before the final answer.

However, sound intuitive thinking remained possible even at the highest levels of difficulty:
for the hardest decile of items in each experiment (final-stage accuracy = 14.2% in Experiment 1;
19.3% in Experiment 2), the models still predicted non-correction rates of 21.6% (empirical =
29.9%) and 25.8% (empirical = 33.9%), respectively. This indicates that although sound intuitive

thinking becomes less probable as difficulty increases, it does not disappear entirely.

3.2. Exploratory Confidence Analysis

One may wonder whether participants exhibit intuitive metacognitive sensitivity by reporting
lower confidence when giving an incorrect response in the initial stage of the paradigm. The results
showed that participants reported higher confidence for correct responses than for incorrect
responses. Participants were thus able to recognize when they had not converged on the correct

solution in the CRA, even when deliberation was minimized. This strong error sensitivity can be
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explained by the fact that an incorrect candidate response fails to form three valid compound words

from the cues, leading to reduced experienced confidence.

A related question is whether lower confidence in the initial stage predicts higher accuracy
in the final stage. Such a pattern would suggest the engagement of deliberative thinking when initial
certainty is low, as previously observed in the reasoning literature (e.g., Bago & De Neys, 2017).
To test this, we examined whether initial confidence on incorrect responses predicted final accuracy
by comparing “00” and “01” responses (thus controlling for initial accuracy). Our results clearly
show that, in both experiments, initial confidence did not predict final accuracy. Full details of

these supplementary confidence analyses are provided in Appendix H for the interested reader.

3.3.Associative Processes Account for Intuitive Performance

Our results point to a clear role for sound intuitive thinking in creative idea generation. To
clarify how such intuitions arise, we examined associative processes underlying convergent

thinking at both the item and participant levels.

3.3.1. Items’ Semantic Search Space Correlates with Sound Intuitive Thinking

At the item level, we tested whether semantic similarity between the three cue words and
their solution could explain why some problems more readily elicit correct intuitions than others
in CRA items (e.g.,“‘extinguisher, truck, camp” is closer in meaning to its solution “fire,” while

“baby, spring, cap” is more distant from its solution “shower” and thus harder).

To compute the semantic similarity between the string of three cue words and the solution
word for each item, we employed a state-of-the-art transformer model (see Section 2.11.). Results

indicated that there was a large and positive correlation between semantic similarity and the “11”
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response rate in Experiment 1, #(22) = .54, p = .006, 95% CI [.18, .78], as well as in Experiment 2,
r(22) = .54, p=.007,95% CI [.17, .77]. However, this was not the case for “01” response in either
Experiment 1, 7(22) = .05, p = .83, 95% CI [-.36, .44] or in Experiment 2, #(22) = -.01, p = .96,
95% CI [-.41, .39]. In line with these findings, there was also a positive correlation between
semantic similarity and the by-item non-correction rate in Experiment 1, #(22) = .43, p = .035, 95%
CI[.04, .71], and in Experiment 2, r(22) = .45, p = .026, 95% CI [.06, .73]. Therefore, as shown in
Fig. 3a, items with higher semantic similarity between the cue words and the solution word were
associated with a higher likelihood of sound intuitive thinking (“11” responses) compared to
deliberate correction following an initial failure (“01” responses). Put differently, semantic
similarity predicted the likelihood of sound intuitive thinking but not sound deliberate thinking in
our experiments. This pattern of results is consistent with the idea that associative processes are

more likely to be at play during intuitive rather than deliberate reasoning.
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Figure 3. Associative processes at the item and participant levels relate to intuitive performance in
the CRA. a) Relationship between the semantic similarity of the cue words’ string to the solution
word and the proportion of “11” direction of change category and “01” direction of change category
at the item level, averaged over the two experiments. Lines show linear regression fits with shaded
areas representing the 95% confidence interval. b) Example visualization of the semantic networks
of the High “11” group (orange, left panel) and Low “11” group (red, right panel) in Experiment 2
using the Pathfinder network method. Circles (nodes) represent concepts, and lines (edges)
represent the strength of the semantic associations between the concepts for the two groups, where
shorter lines reflect stronger associations. ¢) Relationship between forward flow in the animal
fluency task and the proportion of “11” direction of change category and “01” direction of change
category at the participant level in Experiment 2. Lines show linear regression fits with shaded
areas representing the 95% confidence interval. These results demonstrate that higher intuitive
performance in the CRA is associated with items characterized by a smaller semantic search space
and participants showing a more flexible and efficient semantic memory structure.
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3.3.2. Interindividual Differences in Semantic Memory Structure Relate to Higher Intuitive

Performance

At the participant level, we tested whether differences in the semantic memory structure
could affect their (intuitive) abilities in the CRA task. Prior research indicates that creative
individuals tend to have more flexible and interconnected semantic networks, which reduce the
need for controlled, deliberate search (Kenett et al., 2014, 2018; Luchini et al., 2023). To test this,
we used a verbal fluency task in Experiment 2, in which participants have to generate as many
animal names as possible in three minutes. This task allowed us to map participants’ semantic
memory structure by estimating how closely concepts were interconnected. We then compared

networks for individuals with higher versus lower intuitive performance on the CRA.

To contrast participants with higher and lower intuitive performance, we conducted a median
split on the proportion of “11” responses in the CRA in Experiment 2. We then estimated semantic
memory networks separately for the two resulting groups using three different estimation
techniques: the naive random walk, the pathfinder network, and the correlation-based methods (see
Section 2.12.3.). Fig. 3b shows an example of estimated networks for the two groups. We compared
the estimated networks on three critical network metrics that have been shown to correlate with
creativity (e.g., Benedek et al., 2017; Kenett et al., 2014). The first, Average Shortest Path Length
(ASPL), quantifies the average minimum steps necessary to connect any two nodes in the network.
A higher ASPL indicates a more spread-out network structure. The second, Clustering Coefficient
(CC), measures the likelihood that two adjacent nodes of the same node are also directly connected,
reflecting local interconnectivity. The third metric, modularity (Q), assesses the extent to which

the network is segmented into smaller, distinct sub-networks, which can correspond to semantic
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categories (e.g., farm animals vs. pets). A higher Q indicates greater separation between these sub-

networks.

To compare the network structures of the two groups statistically, we conducted independent
t-tests using case-wise bootstrap analysis. We report the results for each network estimation method
separately in Appendix F. To summarize these results, we computed pooled standardized effect
sizes while accounting for the dependence between these measures (see Section 2.12.3.).
Participants with higher intuitive performance exhibited a semantic memory structure
characterized by less dispersion (i.e., lower ASPL; Hedges' g =-0.25, 95% CI [-0.33,-0.17], Z = -
6.01, p <.001), greater interconnectedness (i.e., higher CC; Hedges' g = 0.61, 95% CI[0.52, 0.7],
Z=13.62, p <.001), and a reduced number of sub-networks (i.e., lower Q; Hedges' g = -0.66, 95%

CI[-0.75,-0.57], Z=-14.61, p < .001).

Overall, compared to the Low “11” group, the High “11” group's semantic memory network
had shorter mean path lengths (lower ASPL), showed significantly greater connectivity (higher
CC), and contained fewer distinct sub-networks (lower Q). Taken together, these results suggest
that sound intuitive reasoners had a denser and more interconnected semantic memory structure,
likely allowing them to reach a solution to the CRA problem more easily in the initial, intuitive

response stage (Fig. 3b).

3.3.3. Individual Exploration of Semantic Space Relates to Intuitive Performance

To further validate our group-level analysis, we investigated whether the effectiveness with
which each participant navigated the semantic space in the animal fluency task was related to their
intuitive performance in the CRA in Experiment 2. We computed the forward flow for each

participant using the verbal fluency list generated by each participant. This metric captures the
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average semantic progression of a chain of thoughts over time by assessing how closely each new
concept aligns semantically with the bulk of previously generated concepts, yielding a synthetic
measure of how well one explores the semantic space (Gray et al., 2019). First, using the same
transformer model as in the semantic search space analysis, we quantified the average semantic
distance between each newly generated word in the verbal fluency task and all the preceding words
generated by the participant. We then calculated the mean of these individual averages to obtain

the forward flow for each participant (see Section 2.12.2.).

Fig. 3¢ summarizes the results. We observed a moderate correlation between forward flow
and the proportion of “11” responses, 1(97) = .32, p=.001, 95% CI [.13, .48], but not the proportion
of “01” responses, 1(97) = -.05, p = .64, 95% CI [-.24, .15]. To address potential confounding
factors, we conducted a multiple linear regression using the “11” proportion as the dependent
variable and included forward flow, verbal fluency (i.e., the number of words produced by
participants), and the participant’s education level as independent variables. Even after adjusting
for these additional variables, the effect of forward flow remained the only statistically significant
predictor of “11” response proportion, b = 6.01, #(94) = 2.35, p = .02 (see Appendix G for the full
model). These results are in line with our group-level analysis of semantic memory structure,
suggesting that participants who explored the semantic space more efficiently (during the verbal

fluency task) also tended to show a better intuitive solution performance in the CRA.

4. Discussion

In a series of two experiments, we used a two-response paradigm where participants were
required to provide their intuitive, initial responses under both concurrent cognitive load and time

pressure, to ascertain whether participants were able to give the correct response intuitively in the
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CRA. Remarkably, the results revealed that a majority of accurate responses were already correct
right from the initial intuitive stage where deliberation was minimized. This suggests that intuitive
processes may play a larger role in producing the correct response in the CRA than previously

assumed.

What underlies this high prevalence of correct intuitive responses? Our findings point to two
key factors. First, we observed a strong positive correlation between the semantic similarity of cue
words to the solution word and the proportion of correct intuitive responses: problems with a
smaller semantic search space were more likely to be solved intuitively. Second, interindividual
differences in associative thinking were also significantly related to intuitive performance. Through
an additional semantic fluency task, we estimated the structure of participants’ semantic memory
networks in Experiment 2. We found that higher intuitive performance in the CRA was linked to a
more efficient and flexible semantic memory structure at the group level. Specifically, this structure
exhibited characteristics of a “small-world” network—high local connectivity, shorter average path
lengths, and lower modularity—allowing concepts that are more distantly related to be connected
with greater efficiency and flexibility (He et al., 2020; Kenett et al., 2018). This result replicates
prior work showing that convergent thinking performance measured in standard one-response CRA
tasks is related to a more flexible semantic memory structure (Luchini et al., 2023) and extends it
by showing that similar structural properties are associated with intuitive performance under strong
time and resource constraints. To further validate these findings, we modeled the efficiency of
semantic exploration by computing a forward flow metric at the individual level (Gray et al., 2019).
We found that the efficiency of participants’ exploration of the semantic space was positively

linked to their intuitive performance in the CRA. Taken together, these results provide compelling
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evidence that correct responses in convergent thinking tasks may often rely on associative

processes that unfold effortlessly within semantic memory.

Overall, these findings suggest that participants may sometimes converge on the correct
response intuitively by relying on associative mechanisms, without the need for further controlled,
deliberate processes in the CRA. They also align with results on insight, which show that problems
solved with insight can often be solved intuitively (Stuyck et al., 2022). This pattern, however, was
not observed in our experiments: although insight was consistently associated with higher
accuracy, we found no evidence that cognitive load or response deadlines differentially affected
insight versus non-insight solutions (see Appendix D for the full results of this exploratory
analysis). However, we do not argue that all creative tasks can be performed purely intuitively.
Even within the CRA, our data show that when the semantic distance between the solution word
and the cue words increases, deliberation becomes more critical. In such cases, deliberate thought

enables a broader exploration of candidate solutions.

Thus, our findings suggest a nuanced understanding of creative thinking, where the necessity
of deliberation depends on both task-related factors, such as the semantic search space, and
interindividual differences. For instance, individuals with a more efficient semantic memory
structure may rely less on costly deliberative thinking, aligning with neuroimaging studies that
suggest greater neural efficiency during creative tasks for more creative people (Chen et al., 2025;
Chrysikou et al., 2020; Herault et al., 2024; Japardi et al., 2018). Similarly, we can predict that
tasks requiring the establishment of more distant connections, or which strongly elicit an incorrect,
intuitive answer, will benefit more from deliberation (e.g., the egg task; Camarda et al., 2024),
highlighting the need to generalize these findings beyond CRA to other forms of creative

generation. In this respect, our findings align with recent theories that offer a more nuanced view
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of the interplay between intuitive and deliberate processes in creativity. The “distance-dependent
representation activation mode” hypothesis (D-DRAM; Volle, 2018), for instance, suggests a
dynamic balance between associative and controlled processes, influenced by task demands, the
phase of the creative process, and interindividual differences. However, while the D-DRAM
hypothesis emphasizes the role of controlled processes in the evaluative phase of creativity—such
as inhibiting common ideas—our results point toward a complementary perspective: the evaluative

phase of creativity can still occur effectively even when deliberation is minimized.

Interestingly, the findings from our experiments nicely align with those observed in the
logical reasoning field, where people are often able to produce correct responses intuitively (e.g.,
Bago & De Neys, 2017, 2019b; Thompson & Johnson, 2014). This automatic access to logical and
probabilistic rules has led to the hypothesis of “logical intuitions” (De Neys, 2012; Handley &
Trippas, 2015; Thompson & Newman, 2017). However, the precise nature of these intuitions
remains a subject of ongoing debate in the reasoning field (De Neys, 2023). Recent experimental
work has shown that these intuitions may, in fact, not rely on logical rules and operations, but rather
on external surface cues that only align with logic (e.g., Ghasemi et al., 2022, 2023; Meyer-Grant
et al., 2023). Importantly, unlike in the reasoning domain, where the exact nature of intuitions is
more difficult to characterize, our computational and semantic analyses allow us to constrain
plausible mechanisms underlying sound intuitive thinking in creative problem-solving. Our
findings suggest that, in this context, intuition operates through the rapid associative activation
between concepts, providing a mechanistic explanation for sound intuitive thinking. At the same
time, it also allows us to specify their boundary condition, as the likelihood of sound intuitive
thinking decreases as the semantic distance between the solution word and the problem cues

increases.
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Although we did not include any direct measure of cognitive capacity (e.g., Raven’s
Matrices) in this study, future research could examine how well such a measure predicts intuitive
performance in the CRA beyond our associative thinking and semantic memory structure measures.
This question is particularly relevant because convergent thinking tasks such as the CRA may
assess intelligence rather than creativity per se (Chuderski & Jastrzebski, 2018). Such a finding
would also align with emerging evidence from the reasoning literature suggesting that cognitive
capacity would be a better predictor of sound intuitive thinking than correct deliberation in

reasoning (Raoelison et al., 2020; Thompson et al., 2018).

To avoid any misinterpretation, we emphasize that our use of the dual-process framework
and the labels “intuitive” and “deliberative” is primarily intended as a pragmatic tool for
communicating among scholars. In this study, “intuition” was defined operationally: we combined
task instructions, time pressure, and concurrent load to reduce the engagement of cognitive
resources during the initial response stage of our paradigm. However, the two-response paradigm
cannot, by itself, resolve the broader debate about whether a given response is truly "intuitive" or
"deliberative" in nature. Accordingly, our results do not imply that the distinction between intuitive
and deliberate thinking is qualitative rather than quantitative. The current data are equally
compatible with a single-process account in which intuition and deliberation are conceived as
opposite ends of a processing continuum (De Neys, 2021; Hayes et al., 2018). We therefore do not
take a position in this broader debate. Instead, our key point is that the intuitive end of the
processing continuum may be more capable than traditionally assumed, and that converging on the
correct response in the CRA does not necessarily require engaging additional cognitive resources

or extended deliberation.
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Although we designed our study to cover a broad range of difficulty using items adapted
from Bowden and Jung-Beeman (2003), a potential concern is that strong intuitive performance
may be due to selecting relatively easier items than those typically found in the literature. To
address this, we compared our results with other CRA studies and found that the combined average
accuracy in the final response stage (61%) falls within the typical range reported in the literature

(42%—80%:; see Appendix I). Thus, our items are neither exceptionally easy nor difficult.

Another potential criticism may be that the presence of sound intuitive thinking in our studies
was due to the fact that our methodology did not sufficiently hamper deliberation in the initial
response stage. It is worth noting that we combined three established procedures (instructions, time
constraints, and cognitive load) to ensure that reasoners could not engage in deliberation. These
methods have all been demonstrated to be effective in limiting deliberation. Furthermore, the
chosen time limit was calibrated using a pilot study in Experiment 1 (see Section 2.6.1.). In
Experiment 2, we introduced an even more stringent cognitive load task and time limit to further
minimize the possibility of engaging in deliberation. The high number of excluded trials (20.1% in
Experiment 1; 36.7% in Experiment 2) indicates that using a more demanding deadline or load
would have created practical and statistical issues, such as selection effects at the subject level
(Bouwmeester et al., 2017). However, we acknowledge that it remains possible some participants

engaged in deliberation during the initial response stage, despite our methodological constraints.

One possible concern is that participants may have strategically safeguarded their
performance on the CRA, by prioritizing the CRA items over responding before the deadline or
succeeding in the cognitive load task. If so, this strategy would likely be more common on difficult
CRA items, where cognitive demand is greater. Such behavior could artificially inflate apparent

intuitive performance in the initial stage due to trial exclusions, as previously noted (e.g., Stuyck
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et al., 2022). More precisely, if excluded trials disproportionately involved difficult items, their
removal could lead to an overestimation of correct intuitive responses through selective truncation
of errors on harder items. To address this concern, we conducted additional analyses in which
missed-deadline trials were conservatively recoded as incorrect. Although the prevalence of sound
intuitive thinking decreased slightly under this stricter approach, it remained very high (see
Appendix J). Thus, our main findings are robust even under conservative assumptions about trial

exclusions.

Note that one could still argue that the response deadline and the cognitive load we used were
not challenging enough and that the correct initial responses we observed would disappear “with
just a little more load or time pressure”. However, such arguments make dual-process theories
difficult to falsify at this point, as any evidence for sound intuitive thinking can always be dismissed
by arguing that the methods left space for deliberation. From a more theoretical perspective, the
issue lies in the fact that dual-process theories are not fully specified (Kruglanski, 2013). The
framework typically suggests that System 2 operates more slowly and requires more cognitive
resources than System 1, yet it does not provide a clear a priori criterion for determining whether
a process is intuitive or deliberate (e.g., requires at least x amount of time or cognitive load; De

Neys, 2023).

Conversely, we cannot entirely rule out the possibility that participants relied on intuitive
rather than deliberative processes during the final response stage. Although our data indicated that
response times in the final stage of the two-response paradigm were not shorter than in the one-
response pre-test, future research could investigate whether performance in the final stage might
be further enhanced by explicitly promoting deliberation (e.g., through incentives or instructional

manipulations).
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To conclude, the present paper shows that convergent thinking does not necessarily require
extended deliberation: under strong time and resource constraints, correct solutions can emerge

through associative processes supported by semantic memory.
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Appendices - Intuitive Insight: Fast Associative Processes Drive Sound

Creative Thinking

A. CRA Problems

Table A.1. List of the CRA items used in our experiments.
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Item number CRA problem Solution Solution type
1 EXTINGUISHER/TRUCK/CAMP FIRE MIXED
2 SURF/PADDLE/SKATE BOARD BACK
3 FOOT/BASKET/VOLLEY BALL BACK
4 JAY/MOCKING/FLU BIRD MIXED
5 DEW/COMB/BEE HONEY FRONT
6 LOSER/THROAT/SPOT SORE FRONT
7 DUCK/FOLD/DOLLAR BILL MIXED
8 BEAT/RATE/DISEASE HEART FRONT
9 LIGHT/BIRTHDAY/STICK CANDLE MIXED
10 OPERA/HAND/DISH SOAP MIXED
11 PALM/SHOE/HOUSE TREE MIXED
12 PLANE/SHIP/LINE AIR FRONT
13 MOUSE/DEATH/SAND TRAP BACK
14 RING/BOOK/SILK WORM BACK
15 SHINE/LIGHT/BEAM SUN/MOON FRONT
16 SENSE/COURTESY/PLACE COMMON FRONT
17 WET/DRY/FARM LAND BACK
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Item number CRA problem Solution Solution type

18 SPOON/CLOTH/CARD TABLE/TEA MIXED
19 RAIN/TEST/STOMACH ACID MIXED
20 COVER/ARM/WEAR UNDER/BAND FRONT
21 CUT/CREAM/WAR COLD FRONT
22 BABY/SPRING/CAP SHOWER MIXED
23 OFF/MILITARY/FIRST BASE BACK

24 LINE/TABLE/SCALE TIME FRONT

Note. Solution type refers to whether the solution word must be appended to the front of the cue

words, to the back, or both (“mixed”).
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B. Data preprocessing

B.1. CRA Task

To account for typing or orthographic mistakes in the CRA responses, we computed the
Levenshtein distance between each response and solution strings, which measures the minimum
number of single-character edits required to transform one string into another. For instance, the
two strings “RRAO” and “TRAP” have a Levenshtein distance of 2. If the computed distance was
less than or equal to 2, the response was manually coded as correct when it matched the correct
response. Furthermore, in contrast to previous studies, we included alternative correct answers for
three CRA items when participants’ responses formed meaningful compound words. When both
experimenters agreed that an “incorrect” response was valid, it was accepted as correct and added

to the list of possible solutions for that CRA item (see Appendix F).

B.2. Animal Fluency Task

To preprocess the animal fluency data for our associative thinking analyses, we used the
SemNetCleaner package in R (Christensen, 2019), following Christensen and Kenett (2021). The
SemNetCleaner package offers a standardized method for preprocessing raw verbal fluency data.
First, the pipeline removes non-category members (e.g., tree, unicorn) and duplicate participant
responses. Subsequently, it corrects spelling errors, compound responses, root word variations, and
continuous strings automatically. Finally, one of the researchers manually corrected the remaining

words that were not recognized by the software.



C. Instructions

C.1. Two-Response Paradigm

After signing a consent form, participants received the following instructions:

Please read these instructions carefully!
In this experiment you will have to solve 24 word puzzle problems and 9 practice problems.

The word problems will be presented to you one after the other and you should not pause
between them. You can take a short break in the middle of the experiment.

It is important that you complete the experiment in one sitting and without distractions.

During the experiment, in each trial you will be presented with three words. The goal is to find a
fourth word that you can attach to each of these three words so that three new meaningful
compound words are created.

For example, the three words BRUSH/PASTE/PICK are connected by the word TOOTH,
because with the word TOOTH the compound words
TOOTHBRUSH/TOOTHPASTE/TOOTHPICK can be formed.

Similarly, the three words RIVER/NOTE/ACCOUNT are connected by the word BANK,
because with the word BANK the compound words RIVERBANK/BANKNOTE/BANK
ACCOUNT can be formed.

For every word puzzle, the solution is always a word that you can only add either to the front or
to the back of each of the three words.

Once you have found the solution, enter your answer and press “Enter”.
If you really can’t find the solution after thinking about it, press “Enter” to go to the next puzzle.

Do your best to solve as many puzzles as possible.

After you have solved a word puzzle, indicate your confidence in your solution. You can do
this by using the cursor of the mouse to choose a position on a horizontal scale between “low
confidence” and “high confidence”.

Finally, you must indicate whether you have solved this word puzzle “with Aha!” or “without
Aha!”.
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With Aha!: with an Aha! experience you become aware of the solution suddenly and clearly.
This can be accompanied by a sense of revelation and relief.

Without Aha!: Unlike an Aha! feeling, finding a solution with analysis is characterized by a
step-by-step search process.

Imagine a dark room that is suddenly lit up (with Aha!) or slowly lit with a dimmer switch
(without Aha!). We ask you to indicate after each word puzzle if you have solved it “with Aha!”
or “without Aha!”.

We are going to start with 3 practice puzzles.

For each puzzle, a fixation cross will appear first. Then, the three words will be presented.

Participants were then given three CRA practice trials with no cognitive load or deadline.
Importantly, they received feedback about the correct response on each trial. They were then

familiarized with the two-response paradigm:

That was the first practice.

In this experiment, we want to know what your initial, intuitive response to these word puzzles
is and how you respond after you have thought about the word puzzles for some more time.

Hence, as soon as the word puzzle is presented, we will ask you to enter your intuitive response.

We want you to respond with the very first answer that comes to mind. You don’t need to
think about it. Just give the first answer that intuitively comes to mind as quickly as possible.

Next, the word puzzle will be presented again and you can take all the time you want to
actively reflect on it. Once you have made up your mind you enter your final response. You will
have as much time as you need to indicate your second response.

In sum, keep in mind that it is really crucial that you give your first, initial response as fast as
possible.

Afterwards, you can take as much time as you want to reflect on the word puzzle and select
your final response.
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We are going to start with a couple of practice problems. From now on we will not be providing
feedback on your responses to the practice problems.

First, a fixation cross will appear.
Then, the word puzzle will be presented.

As we told you, we are interested in your initial, intuitive response. First, we want you to respond
with the very first answer that comes to mind. You don’t need to think about it. Just give the first
answer that intuitively comes to mind as quickly as possible.

To make sure that you answer as fast as possible, a time limit was set for the first response,
which is going to be 8 seconds (Experiment 1) / 6 seconds (Experiment 2).

When there are 2 seconds (Experiment 1) / 1 second (Experiment 2) left, the background color
will turn to yellow to let you know that the deadline is approaching. Please make sure to enter a
response before the deadline passes. If you really can’t think of a word, make sure to press
“Enter” instead of letting the trial pass.

Next, the word puzzle will be presented again and you can take all the time you want to
actively reflect on it. Once you have made up your mind you enter your final response.

After you have made your choice and click on it, you will be automatically taken to the next
page.

Participants were then given two two-response trials without the concurrent cognitive load,

without feedback this time. They were then introduced to the cognitive load task:

You will also need to memorize a pattern while you solve the word puzzles.
You will see a grid with crosses and you will have to memorize their location.
You will first practice with 2 patterns without a word puzzle.

The pattern will be displayed for 2 seconds and then you will have to select it among 4 different
patterns.

Participants had then to do two practice trials for the cognitive load task without the CRA

problems. Following this, they were provided with the following instructions:

In the actual study you will need to memorize the pattern while you give your initial, intuitive
response to the word puzzle. The pattern is briefly presented before each problem. You do not
have to memorize a pattern during your second, final response.
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The difficulty of the pattern might vary. Always try to memorize as many crosses as possible.
Each cross counts!

We know that it is not always easy to memorize the pattern while you are also thinking about the
word puzzle. The most important thing is to correctly memorize the pattern.

First, try to concentrate on the memorization task, and then try to solve the word puzzle.

As a next step, you can practice this with two word puzzles.

After those two last practice trials, participants received the following instructions:

This is the end of practice.

The questions will be presented to you one after the other and you should not pause between
them. After the first 12 questions, you will be invited to take a short break.

Please stay as focused as possible and try to solve as many problems as you can.

Remember, if you really don’t know the response to a word puzzle, make sure to press “Enter”
instead of letting the trial pass.

C.2. Animal Fluency Task (Experiment 2)

At the end of the CRA problems in Experiment 2, participants received the following

instructions:
In this task you have to write the names of as many different animals as you can think of in
three minutes, as quickly as possible.

Type the name of an animal and press Enter to type the next one.

You will be automatically taken to the next page when the three minutes have passed. Please
keep writing animal names until the time runs out.
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D. The “Aha” Experience Indexes Response Fluency Rather Than Sound Intuiting

The high prevalence of sound intuiting we observed could potentially be driven by insight
problem-solving (i.e., the “Aha!” moment). Indeed, if insight problem-solving relies on intuitive,
Type 1 processes to reach the correct solution, a high prevalence of insight responses may account
for these findings. At the phenomenological level, insight problem-solving was associated with
higher confidence ratings in both the initial and final response stages. Fig. A.la provides a summary

of the initial and final confidence levels as a function of solution type.

To analyze these findings, we built a beta generalized mixed-effects model for each
experiment, analyzing confidence as a function of response stage, insight, and their interaction
using sum coding. The results from Experiment 1 indicated that confidence ratings were
significantly higher in the final than in the initial response stage, OR = 1.35, p <.001, Cohen’s d =
0.17,95% CI [0.13, 0.20], as well as for insight compared to non-insight solutions, OR = 1.99, p <
.001, Cohen’s d = 0.38, 95% CI [0.32, 0.44]. The interaction term between insight and response
stage was also significant, OR = 0.90, p <.001, Cohen’s d = -0.06, 95% CI [-0.08, -0.04]. Post-hoc
tests showed that the effect of response stage on confidence was significant both for non-insight
responses, OR = 0.44, Z=-11.52, p <.001, and for insight responses, OR = 0.68, Z=-5.129, p <
.001. The results were similar for Experiment 2, with confidence ratings significantly higher in the
final compared to the initial response stage, OR = 1.30, Cohen’s d = 0.14, 95% CI [0.12, 0.17].
Insight solutions also showed higher confidence compared to non-insight solutions, OR = 1.86,
Cohen’s d = 0.34, 95% CI [0.29, 0.40]. The interaction between insight and response stage was
again significant, OR = 0.92, Cohen’s d = -0.05, 95% CI [-0.07, -0.02]. Post-hoc tests showed that
the effect of response stage on confidence was significant both for non-insight responses, OR =

0.50, Z=-10.47, p < .001, and for insight responses, OR = 0.70, Z = -4.64, p < .001. Overall, the
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confidence results indicate that the effect of response stage was smaller for insight responses, as

participants already had high confidence in the initial response stage for insight responses.

In addition, insight problem-solving was also associated with shorter response times, both
in the initial (Experiment 1: M insight = 4.4 s vs. M non-insight = 5.5 s; Experiment 2: M insight =
3.6 s vs. M non-insight = 4.3 s) and the final response stage (Experiment 1: M insight = 9.3 s vs. M
non-insight = 22.5 s; Experiment 2: M insight = 7.6 s vs. M non-insight = 20 s). Fig. A.1b

summarizes those findings.

To test these results statistically, we used a log-linear mixed-effects model on reaction times
as a function of insight, response stage, and their interaction using sum coding, separately for
Experiment 1 and Experiment 2. Results from Experiment 1 showed that participants were
significantly slower in the final than in the initial response stage, exp(f) = 1.26, #(3275.26) = 20.19,
p <.001, Cohen’s d = 0.81, 95% CI [0.73, 0.89], and significantly faster for insight compared to
non-insight responses, exp(f) = 0.85, #(101.32) = -8.32, p < .001, Cohen’s d = -0.54, 95% CI [-
0.69, -0.39]. The interaction term between insight and response stage was also significant,
indicating that the effect of response stage was smaller for insight responses, exp(f) = 0.85,
#(3259.97) = -14.64, p < .001, Cohen’s d = -1.05, 95% CI [-1.19, -0.9]. Post-hoc tests showed that
the effect of response stage on reaction times was significant both for non-insight responses,
#(3268) = -26.13, p < .001, and for insight responses, #(3263) = -3.61, p < .001. The results were
similar for Experiment 2, with participants significantly slower in the final compared to the initial
response stage, exp(f) = 1.29, 1(2499.43) = 19.95, p <.001, Cohen’s d = 0.81, 95% CI [0.73, 0.90],
and significantly faster for insight compared to non-insight responses, exp() = 0.84, t(101.78) = -
7.25,p<.001, Cohen’s d =0.54, 95% CI [0.39, 0.70]. The interaction between insight and response

stage was also significant, exp(f) = 0.82, #(2491.69) =-15.28, p <.001, Cohen’s d =-1.25, 95% CI
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[-1.42, -1.09]. Post-hoc tests showed that the effect of response stage on reaction times was
significant both for non-insight responses, #2474) = -27.18, p < .001, and for insight responses,
#(2489) = -3.00, p = .0027. Insight problem-solving was thus associated with higher confidence
and faster reaction times in both experiments, consistent with the possibility that insight may

account for sound intuition in our results.
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Figure A.1. Behavioral correlates of insight in Experiments 1 and 2. a) Response confidence as a
function of response stage and solution type. b) Logged reaction time as a function of response
stage and solution type. ¢) Accuracy as a function of response stage and solution type. d) By-item
proportion of “11” and “01” responses as a function of the proportion of insight in the initial
response stage (“11” responses) and in the final response stage (“01” responses). In the boxplots,
the lower and upper hinges correspond to the first and third quartiles, and the middle line shows
the median. The lower (resp. upper) whiskers extend from the hinges to the smallest (resp. largest)
value no further than 1.5 times the interquartile range. Overlaid black dots represent the mean, and
black error bars are standard errors of the mean.
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A central question revolves around whether insight solutions are affected by the initial stage
of the paradigm compared to non-insight solutions. Indeed, if insight does not rely on Type 2,
deliberate processes, insight responses should not (or less) be affected by the constraints of the
initial response stage where deliberation is minimized. Fig. A.1c provides a summary of the initial
and final accuracy as a function of solution type. However, at the item level, the proportion of
reported initial insight responses was almost perfectly correlated with the proportion of “11”
responses in Experiment 1, #(22) = .97, p < .001, 95% CI [.94, .99], as well as in Experiment 2,
r(22) = .96, p <.001, 95% CI [.92, .98]. The proportion of final insight did not correlate with the
proportion of “01” responses in Experiment 1, #(22) = -.14, p = .50, 95% CI [-.52, .28], or in
Experiment 2, #(22) = -.14, p = .50, 95% CI [-.52, .28]. This indicates that the simpler a problem
was from the initial stage, the more participants tended to report solving it through insight, while
solving a problem after an initial incorrect response (or no response at all) was not associated with
insight (Fig. A.1d). Thus, any analysis testing the relationship between insight problem-solving

and sound intuiting should take this item-level confound into account.

To test the theoretical possibility that problems solved through insight would be less
affected by the initial response stage, we built a mixed-effect logistic model on accuracy using
insight, response stage, and their interaction as fixed effects using sum coding. We also added the
final difficulty of the item as a control variable in the model since insight is positively correlated
with item difficulty. In Experiment 1, there was a significant effect of insight on accuracy, OR =
4.79, p <.001, Cohen’s d =0.86, 95% CI [0.71, 1.05], response stage, OR =2.00, p <.001, Cohen’s
d =0.38, 95% CI [0.29, 0.48], as well as item difficulty, OR = 1.07, p < .001, Cohen’s d = 0.04,
95% CI [0.03, 0.04]. However, the interaction between insight and response stage did not reach

significance, OR = 0.90, p = .19, Cohen’s d = -0.06, 95% CI [-0.14, 0.04]. In Experiment 2, the
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results were identical. There was a significant effect of insight on accuracy, OR = 4.29, p <.001,
Cohen’s d =0.80, 95% CI[0.71, 0.91], response stage, OR =2.22, p <.001, Cohen’s d = 0.44, 95%
CI[0.35, 0.55], as well as item difficulty, OR = 1.06, p < .001, Cohen’s d = 0.03, 95% CI [0.03,
0.03]. Once again, the interaction between insight and response stage did not reach significance,
OR=1.04, p=.68, Cohen’s d=0.02, 95% CI [-0.07, 0.12]. Thus, although insight was consistently
associated with higher accuracy, we did not find evidence supporting a distinct impact of the

cognitive load and response deadline on insight solutions compared to non-insight solutions.

Overall, these findings suggest that insight problem-solving does not depend on distinct,
intuitive cognitive mechanisms that could drive sound intuition. Rather, insight seems to index

higher response fluency, characterized by easier problems, higher confidence, and faster responses.



57

E. Mixed-Effects Models in the CRA task

In the CRA, we used (generalized) linear mixed models, allowing trial-by-trial analysis while
accounting for variation across both participants and items. Unlike traditional ANOVA, mixed
models provide greater flexibility by avoiding the need for prior averaging, minimizing Type I
error, managing unbalanced datasets, and improving predictive precision and generalization
through partial pooling, where data for individual participants or items is informed by the entire

dataset (Baayen et al., 2008).

To analyze accuracy and direction of change, we used binomial generalized mixed models
(Bolker et al., 2009). For the supplementary models on response confidence, we used mixed-effects
beta regression (Verkuilen & Smithson, 2012), with adjustments to keep data within a .005 to .995
range before back-transforming it to its original scale (Smithson & Verkuilen, 2006). For reaction
times analyses, the trials could be censored at the deadline in the initial response stages of
Experiment 1 and 2. To account for this, we used censored (Tobit) log-normal mixed-effects
models (Biirkner, 2017), treating trials hitting the deadline as right-censored rather than excluding
them. For the exploratory insight reaction time analyses, insight ratings were only available when
participants provided a valid response, so trials over the response deadline in the initial response
stage were excluded by definition. These analyses were therefore conducted with conventional log-

transformed linear mixed models, with results back-transformed to seconds for interpretation.

To determine the optimal random structure for each analysis, we first identified the maximal
model supported by the data, followed by backward stepwise elimination using the likelihood ratio
test to maximize statistical power (Matuschek et al., 2017). For the binomial models, we assessed
the significance of fixed effects using parametric bootstrapping with 1000 iterations (Booth, 1995).

For reaction times, we evaluated fixed-effect significance with the Kenward-Roger t-test (Kenward
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& Roger, 1997). Censored reaction times models were estimated in a Bayesian framework, due to
convergence issues in the frequentist framework. We used weakly informative priors using four
chains of 4,000 iterations each (2,000 warm-up), yielding 8,000 post-warm-up draws in total.
Posterior estimates are reported with 95% credible intervals (Cr/) and posterior probabilities of
direction (pd). In the case of the supplementary mixed-effects beta regression models on
confidence, we used Wald Z-tests to assess significance due to convergence issues encountered

during the bootstrapping procedure.

In models with interaction terms, we applied sum coding as our contrast scheme. Significant
interactions were further explored via post-hoc tests on estimated marginal means, with Holm-
Bonferroni correction for multiple comparisons. For generalized mixed models, effect sizes are

reported by converting odds ratios to Cohen’s d (Borenstein et al., 2009).

We used the following R packages for the mixed-effects models analyses: bayestestR
(Makowski et al., 2019), brms (Biirckner, 2017), buildmer (Voeten, 2020), emmeans (Lenth et al.,
2019), glmmTMB (Brooks et al., 2017), ImerTest (Kuznetsova et al., 2017), /me4 (Bates et al.,

2014) and parameters (Liidecke et al., 2020).
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F. Semantic Network Modelling

F.1. Semantic Networks Construction

To estimate the semantic networks based on the animal fluency task data, we used three out of
the four methods available in the SemNet package in R (Christensen & Kenett, 2023): the
Correlation-Based Network (CbN) method, the Pathfinder Network (PN) method and the Naive
Random Walk (NRW) method. The Community Network method was excluded from our analyses,
as the estimated networks did not significantly differ from randomly generated networks (see
below). The networks were estimated separately for the two groups based on the median split of

the proportion of “11” responses (i.e., “High 117 vs. “Low 11” group).

In general, we used the default SemNet parameters but adjusted them when the estimated
networks did not significantly differ from randomly generated ones. Below, we outline the methods
and parameters used for network estimation (for a detailed explanation of these methods, see Zemla

& Austerweil, 2018):

1) The CbN method builds a semantic network by analyzing co-occurrences within a binary
response matrix, where rows represent individual participants and columns represent
unique animal names given across participants in the verbal fluency task. Each cell in the
matrix is filled with a “1” if the corresponding participant mentioned the animal and a “0”
otherwise. Responses not provided by at least three participants per group were excluded
to control for confounding factors such as the number of nodes and edges across groups
(Borodkin et al., 2016). Additionally, we included only the responses given across both
groups to ensure that our comparison was based solely on structural differences within the

same nodes across the two networks. We then estimated the networks based on the co-
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occurrence of responses across the group. Here, we used Pearson’s pairwise correlation to
compute the pairwise similarities between each column (e.g., Kenett et al., 2013), which
resulted in an association matrix. The triangulated maximally filtered graph (TMFG;
Christensen et al., 2018a) was subsequently applied to the association matrix to ensure that
only the strongest, most relevant connections were maintained while every node remained
connected in the network.

The PN method (Quirin et al., 2008) also creates a network from the binary response matrix.
Here again, we only kept the responses that were given across both groups, ensuring that
our comparison would be based on structural differences in the organization of the nodes
between the two networks. The PN method uses a proximity measure such as Euclidean
distance to build a proximity matrix. It then keeps the path which has the shortest distance
between every pair of nodes to build a network that emphasizes minimal distances. The
method is parameterized by the two parameters g and », which govern the number of steps
between nodes and the computation of distance, respectively. The SemNet package sets
these two parameters to build the sparsest possible network (i.e., the one with the fewest
number of edges) from the proximity matrix, following Zemla and Austerweil (2018).

The NRW method (Jun et al., 2015) assumes that the fluency lists generated by the
participants arise from an uncensored random walk, “stepping” from one node to another
in the semantic network. The NRW method infers an edge between each adjacent pair of
responses in the participants’ fluency lists, thereby assuming that adjacent responses have
a higher likelihood of being interrelated. To minimize the number of spurious connections
in the network, we applied a threshold to remove pairs that appeared less than three times
across participants to have an edge in the network (Lerner et al., 2009). In the NRW method,

because response order is important, removing responses from participants’ fluency lists to
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control for the differing number of responses between groups is not possible. However, the
difference in verbal fluency between the “High 11" group (M = 36.9 words) and the “Low
11” group (M = 39.4 words) unexpectedly favored the “Low 11" group, was minimal and
statistically non-significant, #94.64) = 1.07, p = .28. Verbal fluency should thus not bias

our NRW findings—and even less so in the expected direction of our predictions.

F.2. Comparison to Random Networks

To ensure that the generated networks had different structures from random networks with
the same number of edges, nodes, and degree sequence (i.e., connections per node), we compared
the network metrics (i.e., ASPL, CC, and Q) of our networks against those of randomly generated
networks. For each network estimation method and response group (i.e., “Low 11" and “High 11”),
we generated 1000 random networks to create a sampling distribution of the network metrics to
compute a p-value for the original group's network measures (Kenett et al., 2013). A significant
result indicates that the network’s structure differs from that of an equivalent random network for

this particular network metric.

The results of this analysis revealed that the generated networks significantly differed from
randomly generated networks for both groups across all network estimation methods and metrics
(all p <.001). However, this was not the case for the Community Network method on the Q and

ASPL metrics, which led us to exclude this method from our analyses.

F.3. Case-wise Bootstrap Analysis

Following Luchini et al. (2023), we used case-wise bootstrap analysis (Efron, 1979) to
assess the difference in the structure of the semantic memory network between the “High 11" and

the “Low 11" groups. Since the group-level estimation of network metrics provides only a single
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value per group, the bootstrapping approach allows us to test whether any differences between the
two groups are significant. We used the with-replacement bootstrapping of the SemNet package
with 1000 iterations to compute the three network metrics (i.e., ASPL, CC, and Q) for each
resampled group’s network. Independent-samples t-tests were then conducted for each network
metric to assess whether the differences between the two groups were significant. The results are

presented in the tables A.2-4.

Table A.2. Independent #-tests results comparing network metrics between the “Low 117 and the

“High 117 groups for the Correlation-Based Network method.

Variable Mean Low 11 (SD) | Mean High 11 (SD) 95% CI t(1998) p-value d Direction
ASPL 4.405 (0.401) 4.346 (0.41) [0.023, 0.094] 3.23 .001 0.144 | Low 11> High 11
CcC 0.704 (0.007) 0.707 (0.007) [-0.003,-0.002] @ -7.58 <.001 0339 Low 1l <Highll
Q 0.709 (0.013) 0.709 (0.013) [-0.001, 0.001] -0.23 .82 0.01 | Low 11 =High 11

Note. ASPL: Average Shortest Path Length; CC: Clustering Coefficient; Q: Modularity; CI =
Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC
indicates greater interconnectivity within the network, and a higher Q indicates stronger

modularity. p-values less than .05 are shown in bold.
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Table A.3. Independent #-tests results comparing network metrics between the “Low 117 and the

“High 117 groups for the Pathfinder Network method.

Variable Mean Low 11 (SD) | Mean High 11 (SD) 95% CI t(1998) p-value d Direction
ASPL 3.674 (0.212) 3.553(0.22) [0.102, 0.14] 12.53 <.001 | 056 | Low 11>Highll
CC 0.346 (0.03) 0.387 (0.035) [-0.043,-0.038] -27.84 @ <.001 125 Low 1l <Highll
Q 0.52 (0.046) 0.454 (0.058) [0.062, 0.071] 28.63 <.001 | 128 | Low 11>Highll

Note. ASPL: Average Shortest Path Length; CC: Clustering Coefficient; Q: Modularity; CI =
Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC
indicates greater interconnectivity within the network, and a higher Q indicates stronger

modularity. p-values less than .05 are shown in bold.

Table A.4. Independent #-tests results comparing network metrics between the “Low 117 and the

“High 117 groups for the Naive Random Walk method.

Variable Mean Low 11 (SD) | Mean High 11 (SD) 95% CI t(1998) p-value d Direction
ASPL 3.624 (0.24) 3.606 (0.446) [-0.013, 0.05] 1.13 .26 0.05 | Low 11 =High 11
CC 0.084 (0.014) 0.086 (0.014) [-0.003, -0.001] = -3.04 .002 0.14 | Low 11 <High 11
Q 0.459 (0.026) 0.439 (0.03) [0.018, 0.023] 16.47 <.001 | 0.74 | Low 11>High 1l

Note. ASPL: Average Shortest Path Length; CC: Clustering Coefficient; Q: Modularity; CI =
Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC
indicates greater interconnectivity within the network, and a higher Q indicates stronger

modularity. p-values less than .05 are shown in bold.
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F.4. Effect Sizes Pooling

As shown in Tables A.2-4, the results of our semantic network analyses did not always
converge. Specifically, the CbN method result for the Q metric was non-significant, as was the
NRW method result for the ASPL metric. We thus computed pooled standardized effect sizes,
accounting for the dependence between these measures (Borenstein et al., 2021), as reported in
Table A.5. We corrected for the fact that the effect sizes are likely correlated across methods by
using the aggregate function in the metafor package in R (Viechtbauer, 2010). Given that the
degree of correlation between our network methods is unknown, we assumed a conservative
correlation of p = .8 for sampling errors within clusters. Importantly, sensitivity analyses across the

full range of possible correlation values did not change the results in terms of significance.

Table A.5. Aggregated semantic memory network metrics comparison between the “Low 11 and

the “High 11" groups.

Parameter Hedge's g 95% CI Z P Direction
ASPL -0.25 [-0.33,-0.17] -6.01 <.001 Low 11> High 11
cC 0.61 [0.52, 0.7] 13.62 <.001 Low 11 <High 11
Q -0.66 [-0.75, -0.57] -14.61 <.001 Low 11> High 11

Note. ASPL = Average Shortest Path Length; CC = Clustering Coefficient; Q = Modularity; CI =
Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC
indicates greater interconnectivity within the network, and a higher Q indicates stronger
modularity. A positive effect size indicates that the specific component was larger in the High “11”
group network, while a negative effect size indicates it was smaller. Effect sizes were aggregated

assuming an inter-method correlation of p = .8. p-values less than .05 are shown in bold.
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G. Estimated Models

In this section, we report the models presented in the results section of the paper. Although
we did not preregister specific analyses, our preregistration indicated that we would analyze
accuracy and direction of change based on item difficulty (three levels: easy, medium, and hard).
However, we eventually chose to use semantic similarity between cue words and the solution word

in each CRA item as a continuous proxy for item difficulty instead, given its theoretical relevance.

Table A.6. Binomial generalized mixed-effects model on accuracy as a function of response stage

and experiment, using sum coding.
accuracy ~ 1 + response_stage + experiment + response_stage:experiment

+ (I + response_stage | subject) + (1 | item_number)

Predictors OR 95% CI1 p-value
Intercept 1.32 [0.65,2.71] 43

Response stage 1.89 [1.74,2.04] <.001
Experiment 0.98 [0.85, 1.12] 44

Response stage:Experiment 1.05 [0.98, 1.13] 17
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Random effects

Group Parameter SD
Subject (Intercept) 0.86

Item (Intercept) 1.79
Subject Response stage 0.24
Subject Cor (Intercept x Response stage) 0.18

Note. p-values and confidence intervals were obtained using parametric bootstrap. OR = odds ratio.
An OR superior/inferior to 1 indicates the magnitude of the increase/decrease in the odds of giving

the correct response.
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Table A.7. Binomial generalized mixed-effects model on the probability of giving a “11” response

(vs. a “01” response) contrasting Experiment 1 and Experiment 2, using dummy coding.

accuracy ~ 1 + experiment + (1 | subject) + (1 | item)

Predictors OR 95% CI p-value
Intercept (Experiment 1) 1.98 [1.13,3.54] 014
Experiment 2 0.87 [0.62, 1.21] .36

Random effects

Group Parameter SD
Subject (Intercept) 0.90
Item (Intercept) 1.24

Note. p-values and confidence intervals were obtained using parametric bootstrap. This model is
based only on trials with a final correct response (i.e., “11” or “01” responses). OR = odds ratio.
An OR superior/inferior to 1 indicates the magnitude of the increase/decrease in the odds of giving

a “11” response vs. a “01” response.
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Table A.8. Linear regression model output for the by-subject proportion of “11” responses as a

function of forward flow, education level and verbal fluency in Experiment 2.

Predictors Estimates  95% CI p.value

(Intercept) 40.60 [18.74,62.47] <.001

Forward Flow 6.01 [0.92,11.09] .021

Education Level 1.12 [-3.98, 6.23] .66

Verbal Fluency 0.13 [-0.29, 0.55] .54

Observations: 98

R?/R? adjusted: 0.10/0.07
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H. Confidence Analyses

H.1. Intuitive Error Sensitivity

Are participants sensitive to their errors in the initial response stage of the paradigm? In
Experiment 1, participants reported higher confidence for correct responses (M = 77.5, SD =21.1)
compared to incorrect responses (M =21.6, SD = 17.4) in the initial stage. A beta regression mixed-
effects model on the initial confidence as a function of accuracy using dummy coding confirmed
that the initial confidence ratings on correctly solved CRA puzzles were significantly higher than
those for incorrect responses, OR = 10.26, p < .001, Cohen’s d = 1.28, 95% CI [1.10, 1.46]. The
results were similar in Experiment 2, where participants also reported a higher confidence for
correct responses (M = 77.2, SD = 26.1) compared to incorrect responses (M = 24.2, SD = 20), OR
=8.09, p <.001, Cohen’s d = 1.15, 95% CI [0.98, 1.33]. Participants were thus able to recognize
that they had not converged on the correct solution in the CRA, even when deliberation was

minimized.

H.2. Initial Confidence and Response Change

Another question concerns whether lower confidence in the initial response stage predicts
higher accuracy in the final response stage. To test this, we examined initial confidence ratings as
a function of the direction of change. Crucially, we focused on initially incorrect responses (i.e.,
“00” or “01” responses) to control for initial accuracy. If lower confidence in the initial stage leads
to higher final accuracy, we should observe lower confidence for “01” responses compared to “00”

responsces.

The observed confidence differences were small in both experiments in Experiment 1 ("00"

responses: M =22.3,SD =18.9; "01" responses: M =20.9, SD =20.4) and in Experiment 2 ("00"
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responses: M =22.6, SD =19; "01" responses: M =23.8, SD = 23.2). To test this statistically, we
built two mixed-effects logistic regression models to predict final accuracy as a function of initial
confidence, subsetting on incorrect initial responses (e.g., "00" or "01" responses). In Experiment
1, initial confidence did not significantly predict final accuracy, OR = 0.93, p = .52, Cohen’s d = -
0.04, 95% CI [-0.17, 0.08]. The pattern was the same in Experiment 2, OR = 0.94, p = .62, Cohen’s

=-0.04, 95% CI [-0.18, 0.11]. Thus, in both experiments, initial confidence did not predict final

accuracy.
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1. Comparison of Item Difficulty Across Studies

A potential criticism of our work could be that we only observed sound intuiting due to the
selection of easier items than usually found in the literature. To address this concern, we can
directly compare our results to other studies using the CRA. We computed the combined average
accuracy in the final response stage across both of our studies. The outcome (61%) was higher than
the accuracy reported in Kounios et al. (2006) (46.2%) and Chein and Weisberg (2014) (42%),
similar to the accuracy reported in Cranford and Moss (2012) (55%), and lower than the accuracy
reported in Stuyck et al. (2021) (78%) or Stuyck et al. (2022) (No-Load condition; 79,9%). In
addition, we meticulously checked responses for spelling accuracy before coding them as correct
or incorrect, and we acknowledged alternative responses as valid solutions to problems when they

were correct (see Appendix H). This may have further boosted the accuracy of our studies.



72

J. Impact of Recoded Missed Deadlines on Intuitive Performance

It is possible that participants safeguarded their performance on the CRA over the deadline
or the cognitive load task in the initial response stage. Since we excluded trials where participants
failed to answer before the deadline or to give a correct answer to the cognitive load task, such a
response strategy coupled with the trials’ exclusion could lead to an overestimation of correct

intuitive responses.

To investigate such a possibility, we correlated the by-item proportion of missed deadlines
and loads with item difficulty (computed as 100 minus the mean accuracy in the final response
stage Results showed that indeed the item difficulty correlated strongly with the proportion of
missed deadlines, 7(22) = .84, p < .001, 95% CI [.66, .93] in Experiment 1 and »(22) = .78, p <
001, 95% CI [.56, .90] in Experiment 2. However, item difficulty did not correlate significantly
with the proportion of failed cognitive loads, 7(22) =.19, p = .37, 95% CI [-.23, 0.55] in Experiment
1 and (22)=.08, p =.70,95% CI[-.33, 0.47] in Experiment 2. This result indicates that participants
missed more deadlines when the item was harder, possibly suggesting that participants safeguarded

their performance on the CRA at the expense of the time constraint.

We thus performed an additional analysis where we recomputed the mean non-correction
rate while conservatively coding the missed deadline trials as incorrect responses. The average
non-correction rate was slightly lower in this conservative analysis: M = 70.4% (SD = 17.8) in

Experiment 1 and M = 63.6% (SD = 21.1) in Experiment 2.

To statistically assess whether there was a higher occurrence of sound intuiting (“11”) as
opposed to correct deliberate responses following an initial incorrect response (“01”), we focused

exclusively on final correct responses, excluding “00” and “10” trials. We then built a mixed-
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effects logistic regression model, which included random intercepts for both participants and items,
with the experiment as a fixed effect. We used a dummy variable to code whether a trial was a “01”
response (coded as 0) or a “11” response (coded as 1). Importantly, the estimated non-correction
rates from the model were significantly different from 0 both for Experiment 1, M = 64%, 95% CI
[51, 75] and Experiment 2, M = 56%, 95% CI [42, 68]. The effect of experiment was significant,
OR =0.71, p = .018, Cohen’s d = -0.19, 95% CI [-0.36, -0.04], indicating that there was a small
but significant decrease in the non-correction rate of Experiment 2 compared to Experiment 1.
Thus, despite this slight decrease, our findings show that when participants gave a correct answer
in the final response stage of the paradigm, they had already given a correct answer in the initial
response stage most of the time. This finding confirms the robustness of our results, even when

recoding the missed deadlines trials as incorrect.
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