
 1 

  

 

 

Intuitive Insight: Fast Associative Processes Drive Sound Creative 

Thinking 

Jérémie Beuclera, Wim De Neysa 

a Université Paris-Cité, LaPsyDÉ, CNRS, F-75005 Paris, France 

Email addresses: J.B.: jeremie.beucler@gmail.com; W.D.N.: wim.de-neys@parisdescartes.fr 

 

Correspondence concerning this article should be addressed to Jérémie Beucler , Sorbonne, 

LaPsyDÉ, 46 rue Saint-Jacques, 75005 Paris, France. Email: jeremie.beucler@gmail.com 

 

Preprint Notice 

This manuscript has been accepted for publication in Cognition. The final version may 

slightly differ from this preprint. 

  

mailto:jeremie.beucler@gmail.com
mailto:wim.de-neys@parisdescartes.fr
mailto:jeremie.beucler@gmail.com


 2 

  

 

Abstract 

Convergent thinking, the ability to find a single optimal solution to a well-defined problem, 

is considered a core component of creativity, and is often assumed to rely on controlled, 

deliberative processes. We tested this assumption using the Compound Remote Associates (CRA) 

test, where participants have to find a word that connects three seemingly unrelated words (e.g., 

“river, note, account”; solution: “bank”). We implemented a two-response paradigm wherein 

participants provided an initial, intuitive response (under cognitive load and time constraints to 

minimize deliberation), followed by a final, deliberate response. Our findings reveal that, in most 

cases, extended deliberation was not necessary for sound thinking—correct final responses were 

typically preceded by accurate intuitive responses produced under time pressure and cognitive load. 

By using large language models and semantic network modeling, we found that items with a 

smaller semantic search space are better solved intuitively, and that participants with a more 

efficient and flexible semantic memory structure display higher intuitive performance on the CRA. 

These results suggest that effective problem-solving in creative tasks may often rely on fast, 

automatic associative processes within semantic memory, without necessarily requiring extended 

deliberation. 
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1. Introduction 

Does sound thinking require deliberation, or can it emerge intuitively? Dual-process theories 

have been highly influential in cognitive psychology, particularly in explaining biases and errors 

in reasoning. According to popular dual-process accounts, human cognition results from a dynamic 

interplay between fast and effortless, intuitive (“Type 1”) processing and slower, more effortful, 

deliberate (“Type 2”) processing (Evans & Stanovich, 2013; Kahneman, 2011; Stanovich & West, 

2000). Although intuitive processes often cue valid responses, they rely on heuristic shortcuts that 

can sometimes lead us astray. In contrast, deliberate processes allow individuals to detect and 

correct erroneous intuitive responses. Traditionally, this view implies that sound thinking 

essentially involves engaging deliberation to override initial misleading intuitions. Beyond 

reasoning, dual-process frameworks have been applied to a wide range of cognitive domains, 

including semantic illusions (Koriat, 2017; Mata et al., 2013), moral judgment (Bago & De Neys, 

2019a; Greene & Haidt, 2002), prosocial behavior (Rand et al., 2012), and notably, creativity 

(Allen & Thomas, 2011; Barr et al., 2014; Cassotti et al., 2016; Sowden et al., 2019).  

However, recent dual-process studies in the reasoning field question the classic dual-process 

conceptualization. In these studies, participants typically have to tackle logico-mathematical “bias” 

problems, such as the well-known bat-and-ball task: “A bat and a ball together cost $1.10. The bat 

costs $1 more than the ball. How much does the ball cost?” (correct answer: “5 cents”). The classic 

dual-process assumption is that correct responding requires a deliberate evaluative phase in which 

initial, intuitively cued solutions (e.g., “10 cents”) are corrected. To disentangle the distinct roles 

of intuitive and deliberative processes, researchers have used a two-response paradigm (Thompson 

et al., 2011). In the first, intuitive stage of this paradigm, participants are required to provide the 

first answer that comes to their mind as quickly as possible. Immediately after, they have all the 
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time they want to deliberate and pick their final response. To ensure that the initial response does 

not rely on deliberation, participants have to answer under time pressure while performing a 

concurrent cognitive load task hampering their cognitive resources (Bago & De Neys, 2017). Given 

that deliberation is assumed to require time and cognitive resources, these constraints minimize the 

possibility that people engage in it. 

Contrary to the predictions of the classic dual-process framework, results indicate that sound 

reasoners are often able to produce correct responses in the initial, intuitive response stage where 

deliberation is minimized (Bago & De Neys, 2017, 2019b; Burič & Konrádová, 2021; Burič & 

Šrol, 2020; Raoelison et al., 2020; Thompson & Johnson, 2014). It has been argued that this 

suggests that deliberate control processes might be less critical for sound thinking than generally 

assumed (De Neys, 2023). Hence, sound reasoners may be primarily characterized by their ability 

to intuit correctly rather than by their capacity to deliberately correct erroneous intuitions 

(Raoelison et al., 2020; Reyna, 2012; Thompson et al., 2018).  

Since the dual-process framework is often posited as a general model of human cognition 

(Evans & Stanovich, 2013; Kahneman, 2011), we believe it is important to assess the 

generalizability of these findings in other cognitive domains (e.g., Beucler et al., 2025; Voudouri 

et al., 2023). Creativity provides an ideal domain for examining this question. Much like revised 

reasoning-based dual-process models, recent creativity models appear more open to the possibility 

of a greater role for intuition in the creative process. Evidence for such a role comes from studies 

showing that people can often arrive at solutions intuitively, or at least recognize when problems 

are solvable, without engaging in deliberate analysis. For instance, Topolinski and Strack (2009) 

found that participants were able to distinguish solvable from unsolvable word triads based on 

intuitive impressions. Similarly, research on insight problem-solving, when a solution emerges 
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suddenly with an “Aha!” experience, has shown that certain creativity problems can be solved 

intuitively (e.g., Stuyck et al., 2022). Thus, recent theories in creativity research emphasize a 

dynamic interplay between intuitive and deliberate processes (Benedek et al., 2023; Volle, 2018), 

whereby bottom-up associative and top-down controlled processes continuously interact to 

produce a creative solution. 

To directly assess the extent of the role of deliberation in creative thinking, we adapted the 

two-response paradigm to the Compound Remote Associates test (CRA; Bowden & Jung-Beeman, 

2003). In this classic “convergent-thinking” task, participants are presented with three problem 

words (e.g., river, note, account) and must find a fourth word that can be appended to each of the 

three words to create three new meaningful compound words (e.g., riverbank, banknote, bank 

account). Participants were required to provide their initial responses as quickly as possible while 

under time pressure (8 seconds in Experiment 1; 6 seconds in Experiment 2) and concurrent 

cognitive load (memorization of a 3x3 matrix in Experiment 1 and a 4x4 matrix in Experiment 2; 

see Bago & De Neys, 2017, 2019a for validation). Subsequently, they were allowed to deliberate 

and give their final responses. To ensure our items matched the difficulty level of previous studies, 

we selected CRA items from Bowden and Jung-Beeman (2003) and conducted a pilot study to 

confirm item difficulty. 

Critically, our objective was twofold. First, we aimed to measure the extent of sound intuitive 

thinking in the CRA. Here, sound intuitive thinking is defined in a strictly operational sense as the 

production of a correct response at the initial response stage of the two-response paradigm, under 

time pressure and concurrent cognitive load, regardless of the specific cognitive processes 

involved. Second, we sought to explain how such correct intuitions arise by investigating the 

underlying associative processes that may support them. Indeed, creative thinking is often assumed 
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to hinge on associative mechanisms that link remote concepts to generate novel ideas (Beaty & 

Kenett, 2023; Kenett et al., 2014; Mednick, 1962; Rossmann & Fink, 2010). Such associative 

dynamics are typically linked to intuitive, “Type 1” processes within the traditional dual-process 

view of reasoning (Evans & Stanovich, 2013; Kahneman, 2011), though this simple mapping 

between intuitive and associative processes is likely an oversimplification in the context of 

creativity (Ovando-Tellez et al., 2024; Sowden et al., 2019). A key goal of the present work is to 

empirically refine our understanding of the relationship between associative processes and intuitive 

thinking.  

Importantly, both item-level and individual-level factors may influence the ease with which 

intuitive responses emerge. At the item level, prior work has shown the semantic similarity between 

cue words and the solution word partly predicts performance in convergent-thinking tasks (Marko 

et al., 2019). Semantic similarity refers to the proximity in meaning between two words or groups 

of words. For example, in the CRA item “extinguisher, truck, camp”, the solution “fire” is 

semantically close to the cues, whereas in “baby, spring, cap”, the solution “shower” is more 

distant, making the item harder to solve.  

At the individual level, creative performance has been linked to differences in how 

knowledge is organized and accessed in semantic memory (e.g., Kenett et al., 2014, 2018; Luchini 

et al., 2023). Semantic memory is often modeled as a network of interconnected concepts, in which 

related concepts are closer and more densely interconnected than distant ones. Individual 

differences in the structure of these semantic networks, such as higher connectivity or shorter paths 

between concepts, are thought to underly greater creative performance. For some individuals, 

concepts that are typically considered remote may thus be more closely interconnected in their 

semantic memory networks, thereby reducing the reliance on deliberate processes. Complementing 
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this network-based view of semantic memory, recent work has emphasized the importance of 

dynamic aspects of associative search. In particular, the forward flow measure was developed to 

capture how efficiently individuals explore semantic space during free association (Gray et al., 

2019). A higher forward flow reflects greater movement through semantic space and has been 

shown to predict creative performance (Beaty et al., 2021; Gray et al., 2019). 

Together, these perspectives suggest that both problem structure and the organization and 

dynamics of semantic memory determine whether solutions are reached intuitively or require 

deliberation. To test this, we adopted recent advances in computational modeling of creativity 

(Beaty & Kenett, 2023). At the item level, we examined whether semantic similarity between the 

three cue words and the solution word of the problem (via word embeddings) predicted intuitive 

versus deliberative solutions for each item. At the participant level, we investigated whether 

individual differences in semantic memory structure and associative search dynamics help explain 

why some individuals are more successful at intuitive problem solving. To this end, we combined 

network modeling of a verbal fluency task to characterize the structure of semantic memory, and 

the forward flow measure to index the dynamics of associative exploration during free association. 

We conducted two experiments: Experiment 1 introduced the two-response paradigm to 

identify the role of intuitive and deliberate processing in the CRA task. Experiment 2 validated the 

results (with a tighter deadline and a more demanding cognitive load task to prevent any possible 

residual deliberation, see Bago & De Neys, 2019a) and introduced the additional verbal fluency 

task to model interindividual differences in semantic memory structure and exploration. 
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2. Methods 

2.1. Transparency and Openness 

The research question and study design were preregistered on the OSF platform (Experiment 

1: https://osf.io/32m7f/?view_only=3c119f6744f8442ba3fad4e324035f7b; Experiment 2: 

https://osf.io/6f47j/?view_only=a6bc40550fe04f6cb4220cd8d4f0141a). No specific analyses were 

preregistered. All data, material, and analysis scripts can be retrieved from: 

https://osf.io/gfsb8/?view_only=81b5433fef4040dc949332ed66aeb3c0. 

2.2. Participants 

Participants were native English speakers recruited on the Prolific platform 

(www.prolific.com) and paid £6.00 per hour. Since we do not know of any previous studies 

adapting the two-response paradigm with the CRA, we based our sample size choice on previous 

studies using the two-response paradigm in the reasoning field (e.g., Bago & De Neys, 2017, 

2019b). In Experiment 1, we recruited 100 participants (52 females, M age = 37.3, SD = 13), among 

which 32% reported  High school, 49% reported a bachelor degree, 16% a master degree, and 3% 

a PhD as their highest education level. In Experiment 2, we recruited 100 participants (47 females, 

M age = 39, SD = 12.7), of which one participant did not report their demographic information. 

Among the remaining participants, 2% reported less than High school, 27.3% reported High school, 

45.5% reported a bachelor degree, 19.2% a master degree, and 6.1% a PhD as their highest 

education level. 

 

 

https://osf.io/32m7f/?view_only=3c119f6744f8442ba3fad4e324035f7b
https://osf.io/6f47j/?view_only=a6bc40550fe04f6cb4220cd8d4f0141a
https://osf.io/gfsb8/?view_only=81b5433fef4040dc949332ed66aeb3c0
https://www.prolific.com/
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2.3. Compound Remotes Associates Test 

In the CRA, participants are presented with three cue words (e.g., river, note, account) and 

have to find a fourth solution word to combine with each of the cue words to form three new 

meaningful compound words (e.g., riverbank, banknote, bank account). We initially selected 

candidate items in Bowden and Jung-Beeman (2003), and we created additional items. The newly 

created items enabled us to cover the whole range of item difficulty, while taking into account the 

position of the solution word within the created compound words, which could either be at the 

front, back or a combination of both (i.e., mixed). This preselection resulted in a list of 54 items, 

of which 17 were new items. We conducted an independent online pilot study using the Prolific 

platform (n = 50, 25 females, M age = 38.8, SD = 13.9) to ensure the validity and reliability of our 

item selection by minimizing the occurrence of alternative correct or incorrect responses. Unlike 

previous studies using the CRA, when multiple participants provided an alternative yet correct 

answer, we included it as a valid alternative solution. The pilot study also enabled us to ensure that 

the items covered a full range of difficulty (Easy: 98–80% accuracy, Medium: 64–46%, Hard: 26–

6%). This process resulted in a final selection of 24 items (M accuracy = 54.8%, SD = 29, range = 

6%–98%). Among our items, 9 were front-positioned, 6 were back-positioned, and 9 were mixed-

positioned items. The full item list with their solutions can be found in Appendix A. For each trial, 

participants were presented with the three cue words and had to type their response before pressing 

‘Enter’ to validate it. Appendix B details how we accounted for orthographic and typing mistakes, 

as well as alternative correct responses. 

In addition, although we did not preregister this criterion, we had to exclude one participant 

in Experiment 1, because they consistently gave inappropriate responses to the CRA problems 

(e.g., answering “basket” or “basketfootvolley” to the problem “basket/foot/volley”). 
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2.4. Animal Fluency Task 

We used the animal fluency task (Ardila et al., 2006), as it is the most widely used to estimate 

semantic networks (Christensen & Kenett, 2023). Participants had 3 minutes to generate as many 

animal names as possible. Participants had to type their response before pressing ‘Enter’ for each 

new response and were reminded to keep working until the time was over. This task was only used 

in Experiment 2. Appendix C provides the complete instructions for the animal fluency task. 

2.5. Cognitive Load Task 

To minimize deliberation in the initial stage of the two-response paradigm, we used the dot 

memorization task (Miyake et al., 2001). This task has been shown to effectively burden executive 

resources in verbal reasoning (e.g., De Neys & Verschueren, 2006; Verschueren et al., 2004). In 

Experiment 1, the participants saw a 3 x 3 grid with four crosses before each CRA problem in the 

initial stage of the paradigm (see Section 2.8.). After their first response, participants had to select 

the correct pattern among four different load matrices. They then received feedback about whether 

they selected the to-be-memorized matrix. The load task was only present during the initial 

response stage, where deliberation was minimized. 

In Experiment 2, we used the same load procedure as in Experiment 1, using a more 

challenging five dot pattern in a 4 x 4 grid (e.g., Bialek & De Neys, 2017; Trémolière & Bonnefon, 

2014). This increased load has been shown to further burden the executive resources of participants 

compared to the simpler load pattern used in Experiment 1 (Trémolière et al., 2012). 
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2.6. Deadline Calibration in the Initial Response Stage 

2.6.1. Experiment 1 

To calibrate an appropriate deadline for the initial stage of the two-response paradigm in 

Experiment 1, we ran a traditional “one-response” version of the experiment (e.g., Bago et al., 

2021). We used the same material as in the two main experiments, but participants only had to give 

a single answer without deadline or load. We recruited an additional online independent sample of 

51 native English speakers on the Prolific platform (26 females, M age = 37.2, SD = 13.1). Similar 

to Experiment 1, we excluded 2 participants who consistently misunderstood the CRA task. 

Participants took on average 13.5 s (SD = 11.2 s) to give a correct answer in the CRA in the 

one-response pre-test. The first quartile of the reaction times for the correct responses was 7.5 s. 

Based on this result, we rounded up this value to the nearest integer to give participants some 

minimal leeway and set the deadline at 8 s in Experiment 1. The screen turned yellow 2 s before 

the deadline to remind participants of the incoming deadline and urge them to type their response. 

To test whether participants were under time pressure in the initial stage of the two-response 

paradigm, we contrasted reaction times between the initial stage of Experiment 1 (M = 5 s, SD = 

0.8 s) and the one-response pre-test (M = 22.6 s, SD = 14.7 s). Because responses in Experiment 1 

were subject to an 8 s deadline, we used a Bayesian censored (Tobit) log-normal mixed-effects 

model, treating missed-deadline trials as right-censored rather than excluding them. Results 

showed that responses in Experiment 1 were about 60% faster than in the one-response pre-test, 

posterior reaction time ratio = 0.40, 95% CrI [0.36, 0.44], pd = 100%. 
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2.6.2. Experiment 2 

In Experiment 2, we used an even more stringent deadline to further minimize the possibility 

that participants engaged in deliberation during the initial response stage. The new deadline was 

calibrated based on the average initial response time from Experiment 1. For Experiment 2, we 

consequently further decreased the deadline to 6 seconds, with the screen turning yellow at 5 

seconds to remind participants to type their response.  

To test whether the time pressure had increased between Experiment 1 and Experiment 2, we 

contrasted the reaction times between the initial stage of Experiment 1 (M = 5 s, SD = 0.8 s) and 

Experiment 2 (M = 4 s, SD = 0.5). Once again, we used a Bayesian censored (Tobit) log-normal 

mixed-effects model, treating missed-deadline trials in the two experiments as right-censored rather 

than excluding them. Results showed that reaction times decreased by 17% in the initial response 

stage of Experiment 2 compared to Experiment 1, posterior reaction time ratio = 0.83, 95% CrI 

[0.79, 0.87], pd = 100%. 

2.7.Final Response Confound 

The one-response pre-test also allowed us to investigate whether providing two responses to 

the same problem in the two-response paradigm biased participants’ answers. More specifically, 

participants might aim to maintain consistency between their initial and final responses. This 

consistency could potentially hinder them from correcting initial incorrect responses, artificially 

reducing the accuracy of the final response stage. Conversely, it is also possible that participants’ 

accuracy in the final response stage of the paradigm could be boosted by having already responded 

once to the same problem in the initial stage. 
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To rule out these possibilities, we contrasted the accuracy of the final response stage of 

Experiment 1 (M = 65.2, SD = 15.3) and Experiment 2 (M = 66.7, SD = 18.7) with the accuracy of 

the one-response pre-test (M = 62.5, SD = 12.8) using mixed-effects logistic regressions including 

random intercepts for participants and items. There was no significant difference between the one-

response pre-test and Experiment 1 (p = .76) nor Experiment 2 (p = .79), suggesting that the 

repetition of the problems in the two-response paradigm did not influence performance in the final 

response stage compared to the one-response pre-test. 

2.8. Two-Response Paradigm Procedure 

 

 
 

Figure 1. Time course of a two-response CRA trial (Experiment 2). 

 

Appendix C provides the complete instructions and training procedure for the two-response 

paradigm adaptation of the CRA. The general procedure was similar to Bago and De Neys (2017). 

The experiments were run online on the Qualtrics platform. A fixation cross was displayed for 2 s 

at the beginning of each trial. Subsequently, the load matrix was presented for 2 seconds. 

Participants were then required to solve the CRA problem for the first time, with an allotted 
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response time of 8 seconds in Experiment 1 (6 seconds in Experiment 2). After 6 seconds (5 

seconds, respectively), the screen’s background turned yellow as a reminder of the impending 

deadline. In cases where participants failed to respond before the deadline, they were prompted to 

provide an answer within the deadline during subsequent initial trials.  

Following their initial response, participants were also required to indicate their response 

confidence by sliding a cursor with their mouse on a horizontal visual analog scale that gradually 

transitioned from red (representing low confidence = 0) to green (representing high confidence = 

100). Subsequently, following Stuyck et al. (2022), participants were tasked with reporting whether 

they had arrived at a solution with insight or not, choosing between two options: “With Aha!” or 

“Without Aha!” The instructions explicitly defined each solution type to ensure participants’ 

understanding, following Stuyck et al. (2022; see Appendix C). Following this, participants had to 

select the correct, to-be-remembered load matrix from among four different matrices. If they were 

unable to identify the correct load matrix, they were instructed to memorize the pattern correctly 

in subsequent trials. Note that the confidence and insight questions were added for exploratory 

purposes (see Appendix D for the results).  

The CRA problem was then presented a second time, and participants could give their final 

response without any deadline or concurrent load. Following this, the participants had to indicate 

their confidence in their final response and whether they reached it through insight or not. In both 

response stages, if participants did not provide an answer for the CRA problem, they were not 

required to indicate response confidence or solution type. 

The answer options appeared in green during the initial response stage and switched to blue 

during the final response stage, serving as a visual cue to remind participants of the question stage 

they were in. Additionally, a reminder sentence was placed beneath each question: “Please indicate 
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your very first, intuitive answer” and “Please provide your final answer”, respectively. The full 

procedure is depicted in Fig. 1. 

2.9. Trial Exclusion 

Following our preregistration criteria, we excluded trials when participants failed to provide 

an initial response within the deadline or did not recognize the correct load matrix because for these 

trials, we cannot be sure that participants did not deliberate in the initial response stage. This 

accounted for 20.1% of the trials in Experiment 1 and 36.7% of the trials in Experiment 2. On 

average, each participant contributed a total of 19.2 trials in Experiment 1 (SD = 3.3) and 15.2 trials 

in Experiment 2 (SD = 5.8) out of 24 trials.  

2.10. Mixed-effects Models 

We used (generalized) linear mixed models to analyze the CRA data, which process trial-

by-trial data while accounting for both participant and item variability. Appendix E outlines the 

method used to find the optimal random structure for each analysis, how we assessed significance 

across our models, and the contrast coding scheme we used based on the specific needs of each 

analysis. 

2.11. Semantic Similarity Measure 

To compute semantic similarity, we used the “all-mpnet-base-v2” model from the python 

package “sentence-transformers” (Reimers & Gurevych, 2019). This transformer model captures 

textual semantic information by ensuring that words or sentences that are semantically close to one 

another will also be close in the internal vector space of the model. Specifically, each word (or 
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group of words) is transformed into a vector representation (or word embedding) in a 768-

dimensional vector space. 

This allows us to compute semantic similarity measures to assess how close words are to one 

another in terms of meaning. Specifically, we transformed the three cue words (as a unique string) 

and the solution word(s) into embeddings and then used cosine similarity to compute how close 

the two resulting vectors were. Cosine similarity is computed as follows: 

𝑠𝑖𝑚(𝑢, 𝑣) = 	
𝑢 ∙ 𝑣

‖𝑢‖ × ‖𝑣‖ (1) 

where u and v are the two vectors we want to compare. 

2.12. Associative Thinking and Semantic Memory Structure Measures 

2.12.1. Data preprocessing 

Appendix B details how we pre-processed the animal fluency data to run our associative 

thinking analyses in Experiment 2 using the SemNetCleaner package in R as described in 

Christensen and Kenett (2023). 

2.12.2. Forward Flow 

To compute the forward flow measure for each participant, we used the same transformer 

model for semantic embedding on the animal names provided by the participants in the additional 

animal fluency task. We then computed forward flow over the chain of concepts generated by each 

participant, as shown in Equation 2, following Gray et al. (2019): 
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where Di,j is the semantic distance between two words embeddings computed as 1 – cosine 

similarity (from Equation 1) and n is the total number of words generated by the participant in the 

animal fluency task. Equation 2 thus computes, for each newly generated animal, the average 

semantic distance between this animal and every previously generated animal. It then computes the 

mean of these averages to yield a synthetic measure of how efficiently the participant explores the 

semantic space. 

2.12.3. Semantic Network Estimations 

To compute the semantic networks at the group level, we used the pipeline described in the 

SemNa package tutorial (Christensen & Kenett, 2023). Because semantic network estimation from 

fluency data involves substantial researcher degrees of freedom and there is no consensus on a 

single “best” method (Zemla & Austerweil, 2018), we adopted a robustness strategy and applied 

the four estimation methods available in the package: the Correlation-Based Network method, the 

Naive Random Walk method, the Pathfinder Network method, and the Community Network 

method (see Appendix F for construction details).  

In line with Luchini et al. (2023), we then estimated semantic networks as a function of 

intuitive performance in the CRA by using a median split to contrast the High “11” group vs the 

Low “11” group semantic networks. Next, we tested whether the generated networks were 

significantly different from random networks with the same number of nodes and edges for each 

network metric. This led us to exclude the Community Network method, for which the metrics 

consistently did not differ from those of randomly generated networks.  
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We then compared the networks using case-wise bootstrap analysis. Because semantic 

network metrics can depend on the estimation procedure and results did not always converge across 

methods, we aggregated method-specific standardized effect sizes to summarize the overall 

direction and magnitude of group differences across approaches, using meta-analytic procedures 

for dependent effect sizes (Borenstein et al., 2021). Appendix F details the complete procedure for 

the semantic network analysis. 

3. Results 

3.1. Quantifying Correct Intuitive Versus Deliberate Performance 

Fig. 2a provides a summary of the initial and final accuracies for the two experiments. The 

average accuracy was significantly lower in the initial response stage (Experiment 1: M = 48.3%, 

SD = 14.5; Experiment 2: M = 49.8%, SD = 22.8) than in the final response stage (Experiment 1: 

M = 65.2%, SD = 15.3; Experiment 2: M = 66.7%, SD = 18.7). A mixed-effects logistic regression, 

including random intercepts for items and random intercepts and slopes for response stage for 

participants, revealed a significant effect of response stage on accuracy, OR = 1.89, p < .001, 

Cohen’s d = 0.35, 95% CI [0.31, 0.39], but no significant effect of experiment (p = .74) nor of the 

response stage by experiment interaction (p = .17). Thus, the results consistently show that although 

deliberation helped, participants still managed to give a high number of correct responses in the 

initial response stage where deliberation was minimized.  
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Figure 2. By-subject and by-item performance analyses across response stages in Experiment 1 
and Experiment 2. a) Response accuracy as a function of response stage, by subject. b) Proportion 
of each direction-of-change category, by subject: “00” = incorrect initial and incorrect final 
response; “01” = incorrect initial and correct final response; “10” = correct initial and incorrect 
final response; “11” = correct initial and correct final response. In the boxplots, the lower and upper 
hinges correspond to the first and third quartiles, the middle line shows the median, and the 
whiskers extend to the smallest and largest values no further than 1.5 times the interquartile range. 
Overlaid black dots represent the mean, and black error bars indicate standard errors of the mean. 
c) Distribution of the average non-correction rate across participants, by subject. d) Relationship 
between final response accuracy and non-correction rate at the item level. Solid lines with shaded 
ribbons show linear regression fits with 95% confidence intervals; the dashed line indicates the 
identity line. 

 

To better understand how deliberation affected participants’ responses, we performed a 

direction of change analysis (Bago & De Neys, 2017). In each trial, participants can give either a 

correct response (accuracy = 1) or an incorrect response (accuracy = 0) in the two response stages 

(initial and final). This yields four possible directions of change: “00” (incorrect initial and 

incorrect final response), “01” (incorrect initial and correct final response), “10” (correct initial and 
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incorrect final response) and “11” (correct initial and correct final response). Fig. 2b summarizes 

those results. 

To obtain a straightforward measure of how “11” responses compared to “01” responses, we 

computed the mean “non-correction rate” across our participants. This rate, expressed as the 

proportion 11/(11+01) (Bago & De Neys, 2017), indicates the proportion of correct responses in 

the final response stage that were already correct in the initial response stage. A high non-correction 

rate indicates that most correct responses were already accurate in the initial response stage, 

implying that participants did not require deliberation to arrive at the correct answer. The mean 

non-correction rate was 72.7% (SD = 23.2) in Experiment 1 and 71.4% (SD = 23.2) in Experiment 

2 (Fig. 2c).  

To statistically assess whether there was a higher occurrence of sound intuitive thinking 

(“11”) as opposed to correct deliberate responses following an initial incorrect response (“01”), we 

focused exclusively on final correct responses, excluding “00” and “10” trials. We then built a 

mixed-effects logistic regression model, which included random intercepts for both participants 

and items, with the experiment as a fixed effect. We used a dummy variable to code whether a trial 

was a “01” response (coded as 0) or a “11” response (coded as 1). The effect of experiment was 

not significant (p = .36). Importantly, the estimated non-correction rates from the model were large 

both for Experiment 1, M = 66%, 95% CI [53, 78] and Experiment 2, M = 63%, 95% CI [50, 76]. 

Thus, when participants gave a correct answer in the final response stage of the paradigm, they had 

already given a correct answer in the initial response stage most of the time. 

To assess the limits of sound intuitive thinking in the CRA, we examined how item difficulty 

related to the likelihood of sound intuitive thinking (Fig. 2d). Item difficulty was operationalized 

as the average accuracy for each item in the final response stage, providing an estimate of difficulty 
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once participants were allowed to deliberate. We fitted linear regression models predicting the by-

item non-correction rate from by-item difficulty in each experiment. Results showed that item 

difficulty was a strong positive predictor of the non-correction rate in both Experiment 1, b = 0.79, 

t(22) = 9.84, p < .001, and Experiment 2, b = 0.75, t(22) = 9.10, p < .001 (see Appendix G for the 

full models). This suggests that as items became more challenging, the occurrence of sound 

intuitive thinking (“11” responses) decreased relative to deliberate correction following an initial 

error (“01” responses), which highlights a boundary condition for intuitive processing. 

Consistently, item difficulty was also very strongly correlated with slower reaction times in the 

final response stage, Experiment 1: r(22) = −.89, p < .001, 95% CI [−.95, −.75]; Experiment 2: 

r(22) = −.93, p < .001, 95% CI [−.97, −.85], indicating that harder items tended to elicit longer 

deliberation before the final answer. 

 However, sound intuitive thinking remained possible even at the highest levels of difficulty: 

for the hardest decile of items in each experiment (final-stage accuracy = 14.2% in Experiment 1; 

19.3% in Experiment 2), the models still predicted non-correction rates of 21.6% (empirical = 

29.9%) and 25.8% (empirical = 33.9%), respectively. This indicates that although sound intuitive 

thinking becomes less probable as difficulty increases, it does not disappear entirely. 

3.2. Exploratory Confidence Analysis 

One may wonder whether participants exhibit intuitive metacognitive sensitivity by reporting 

lower confidence when giving an incorrect response in the initial stage of the paradigm. The results 

showed that participants reported higher confidence for correct responses than for incorrect 

responses. Participants were thus able to recognize when they had not converged on the correct 

solution in the CRA, even when deliberation was minimized. This strong error sensitivity can be 
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explained by the fact that an incorrect candidate response fails to form three valid compound words 

from the cues, leading to reduced experienced confidence. 

A related question is whether lower confidence in the initial stage predicts higher accuracy 

in the final stage. Such a pattern would suggest the engagement of deliberative thinking when initial 

certainty is low, as previously observed in the reasoning literature (e.g., Bago & De Neys, 2017). 

To test this, we examined whether initial confidence on incorrect responses predicted final accuracy 

by comparing “00” and “01” responses (thus controlling for initial accuracy). Our results clearly 

show that, in both experiments, initial confidence did not predict final accuracy. Full details of 

these supplementary confidence analyses are provided in Appendix H for the interested reader. 

3.3.Associative Processes Account for Intuitive Performance 

Our results point to a clear role for sound intuitive thinking in creative idea generation. To 

clarify how such intuitions arise, we examined associative processes underlying convergent 

thinking at both the item and participant levels. 

3.3.1. Items’ Semantic Search Space Correlates with Sound Intuitive Thinking 

At the item level, we tested whether semantic similarity between the three cue words and 

their solution could explain why some problems more readily elicit correct intuitions than others 

in CRA items (e.g.,“extinguisher, truck, camp” is closer in meaning to its solution “fire,” while 

“baby, spring, cap” is more distant from its solution “shower” and thus harder). 

To compute the semantic similarity between the string of three cue words and the solution 

word for each item, we employed a state-of-the-art transformer model (see Section 2.11.). Results 

indicated that there was a large and positive correlation between semantic similarity and the “11” 
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response rate in Experiment 1, r(22) = .54, p = .006, 95% CI [.18, .78], as well as in Experiment 2, 

r(22) = .54, p = .007, 95% CI [.17, .77]. However, this was not the case for “01” response in either 

Experiment 1, r(22) = .05, p = .83, 95% CI [-.36, .44] or in Experiment 2, r(22) = -.01, p = .96, 

95% CI [-.41, .39]. In line with these findings, there was also a positive correlation between 

semantic similarity and the by-item non-correction rate in Experiment 1, r(22) = .43, p = .035, 95% 

CI [.04, .71], and in Experiment 2, r(22) = .45, p = .026, 95% CI [.06, .73]. Therefore, as shown in 

Fig. 3a, items with higher semantic similarity between the cue words and the solution word were 

associated with a higher likelihood of sound intuitive thinking (“11” responses) compared to 

deliberate correction following an initial failure (“01” responses). Put differently, semantic 

similarity predicted the likelihood of sound intuitive thinking but not sound deliberate thinking in 

our experiments. This pattern of results is consistent with the idea that associative processes are 

more likely to be at play during intuitive rather than deliberate reasoning. 
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Figure 3. Associative processes at the item and participant levels relate to intuitive performance in 
the CRA. a) Relationship between the semantic similarity of the cue words’ string to the solution 
word and the proportion of “11” direction of change category and “01” direction of change category 
at the item level, averaged over the two experiments. Lines show linear regression fits with shaded 
areas representing the 95% confidence interval. b) Example visualization of the semantic networks 
of the High “11” group (orange, left panel) and Low “11” group (red, right panel) in Experiment 2 
using the Pathfinder network method. Circles (nodes) represent concepts, and lines (edges) 
represent the strength of the semantic associations between the concepts for the two groups, where 
shorter lines reflect stronger associations. c) Relationship between forward flow in the animal 
fluency task and the proportion of “11” direction of change category and “01” direction of change 
category at the participant level in Experiment 2. Lines show linear regression fits with shaded 
areas representing the 95% confidence interval. These results demonstrate that higher intuitive 
performance in the CRA is associated with items characterized by a smaller semantic search space 
and participants showing a more flexible and efficient semantic memory structure. 
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3.3.2. Interindividual Differences in Semantic Memory Structure Relate to Higher Intuitive 

Performance 

At the participant level, we tested whether differences in the semantic memory structure 

could affect their (intuitive) abilities in the CRA task. Prior research indicates that creative 

individuals tend to have more flexible and interconnected semantic networks, which reduce the 

need for controlled, deliberate search (Kenett et al., 2014, 2018; Luchini et al., 2023). To test this, 

we used a verbal fluency task in Experiment 2, in which participants have to generate as many 

animal names as possible in three minutes. This task allowed us to map participants’ semantic 

memory structure by estimating how closely concepts were interconnected. We then compared 

networks for individuals with higher versus lower intuitive performance on the CRA. 

To contrast participants with higher and lower intuitive performance, we conducted a median 

split on the proportion of “11” responses in the CRA in Experiment 2. We then estimated semantic 

memory networks separately for the two resulting groups using three different estimation 

techniques: the naïve random walk, the pathfinder network, and the correlation-based methods (see 

Section 2.12.3.). Fig. 3b shows an example of estimated networks for the two groups. We compared 

the estimated networks on three critical network metrics that have been shown to correlate with 

creativity (e.g., Benedek et al., 2017; Kenett et al., 2014). The first, Average Shortest Path Length 

(ASPL), quantifies the average minimum steps necessary to connect any two nodes in the network. 

A higher ASPL indicates a more spread-out network structure. The second, Clustering Coefficient 

(CC), measures the likelihood that two adjacent nodes of the same node are also directly connected, 

reflecting local interconnectivity. The third metric, modularity (Q), assesses the extent to which 

the network is segmented into smaller, distinct sub-networks, which can correspond to semantic 
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categories (e.g., farm animals vs. pets). A higher Q indicates greater separation between these sub-

networks.  

To compare the network structures of the two groups statistically, we conducted independent 

t-tests using case-wise bootstrap analysis. We report the results for each network estimation method 

separately in Appendix F. To summarize these results, we computed pooled standardized effect 

sizes while accounting for the dependence between these measures (see Section 2.12.3.). 

Participants with higher intuitive performance exhibited a semantic memory structure 

characterized by less dispersion (i.e., lower ASPL; Hedges' g = -0.25, 95% CI [-0.33, -0.17], Z = -

6.01, p < .001), greater interconnectedness (i.e., higher CC; Hedges' g = 0.61, 95% CI [0.52, 0.7], 

Z = 13.62, p < .001), and a reduced number of sub-networks (i.e., lower Q; Hedges' g = -0.66, 95% 

CI [-0.75, -0.57], Z = -14.61, p < .001).  

Overall, compared to the Low “11” group, the High “11” group's semantic memory network 

had shorter mean path lengths (lower ASPL), showed significantly greater connectivity (higher 

CC), and contained fewer distinct sub-networks (lower Q). Taken together, these results suggest 

that sound intuitive reasoners had a denser and more interconnected semantic memory structure, 

likely allowing them to reach a solution to the CRA problem more easily in the initial, intuitive 

response stage (Fig. 3b). 

3.3.3. Individual Exploration of Semantic Space Relates to Intuitive Performance 

To further validate our group-level analysis, we investigated whether the effectiveness with 

which each participant navigated the semantic space in the animal fluency task was related to their 

intuitive performance in the CRA in Experiment 2. We computed the forward flow for each 

participant using the verbal fluency list generated by each participant. This metric captures the 
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average semantic progression of a chain of thoughts over time by assessing how closely each new 

concept aligns semantically with the bulk of previously generated concepts, yielding a synthetic 

measure of how well one explores the semantic space (Gray et al., 2019). First, using the same 

transformer model as in the semantic search space analysis, we quantified the average semantic 

distance between each newly generated word in the verbal fluency task and all the preceding words 

generated by the participant. We then calculated the mean of these individual averages to obtain 

the forward flow for each participant (see Section 2.12.2.).  

Fig. 3c summarizes the results. We observed a moderate correlation between forward flow 

and the proportion of “11” responses, r(97) = .32, p = .001, 95% CI [.13, .48], but not the proportion 

of “01” responses, r(97) = -.05, p = .64, 95% CI [-.24, .15]. To address potential confounding 

factors, we conducted a multiple linear regression using the “11” proportion as the dependent 

variable and included forward flow, verbal fluency (i.e., the number of words produced by 

participants), and the participant’s education level as independent variables. Even after adjusting 

for these additional variables, the effect of forward flow remained the only statistically significant 

predictor of “11” response proportion, b = 6.01, t(94) = 2.35, p = .02 (see Appendix G for the full 

model). These results are in line with our group-level analysis of semantic memory structure, 

suggesting that participants who explored the semantic space more efficiently (during the verbal 

fluency task) also tended to show a better intuitive solution performance in the CRA. 

4. Discussion 

In a series of two experiments, we used a two-response paradigm where participants were 

required to provide their intuitive, initial responses under both concurrent cognitive load and time 

pressure, to ascertain whether participants were able to give the correct response intuitively in the 
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CRA. Remarkably, the results revealed that a majority of accurate responses were already correct 

right from the initial intuitive stage where deliberation was minimized. This suggests that intuitive 

processes may play a larger role in producing the correct response in the CRA than previously 

assumed. 

What underlies this high prevalence of correct intuitive responses? Our findings point to two 

key factors. First, we observed a strong positive correlation between the semantic similarity of cue 

words to the solution word and the proportion of correct intuitive responses: problems with a 

smaller semantic search space were more likely to be solved intuitively. Second, interindividual 

differences in associative thinking were also significantly related to intuitive performance. Through 

an additional semantic fluency task, we estimated the structure of participants’ semantic memory 

networks in Experiment 2. We found that higher intuitive performance in the CRA was linked to a 

more efficient and flexible semantic memory structure at the group level. Specifically, this structure 

exhibited characteristics of a “small-world” network—high local connectivity, shorter average path 

lengths, and lower modularity—allowing concepts that are more distantly related to be connected 

with greater efficiency and flexibility (He et al., 2020; Kenett et al., 2018).  This result replicates 

prior work showing that convergent thinking performance measured in standard one-response CRA 

tasks is related to a more flexible semantic memory structure (Luchini et al., 2023) and extends it 

by showing that similar structural properties are associated with intuitive performance under strong 

time and resource constraints. To further validate these findings, we modeled the efficiency of 

semantic exploration by computing a forward flow metric at the individual level (Gray et al., 2019). 

We found that the efficiency of participants’ exploration of the semantic space was positively 

linked to their intuitive performance in the CRA. Taken together, these results provide compelling 
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evidence that correct responses in convergent thinking tasks may often rely on associative 

processes that unfold effortlessly within semantic memory.  

Overall, these findings suggest that participants may sometimes converge on the correct 

response intuitively by relying on associative mechanisms, without the need for further controlled, 

deliberate processes in the CRA. They also align with results on insight, which show that problems 

solved with insight can often be solved intuitively (Stuyck et al., 2022). This pattern, however, was 

not observed in our experiments: although insight was consistently associated with higher 

accuracy, we found no evidence that cognitive load or response deadlines differentially affected 

insight versus non-insight solutions (see Appendix D for the full results of this exploratory 

analysis). However, we do not argue that all creative tasks can be performed purely intuitively. 

Even within the CRA, our data show that when the semantic distance between the solution word 

and the cue words increases, deliberation becomes more critical. In such cases, deliberate thought 

enables a broader exploration of candidate solutions.  

Thus, our findings suggest a nuanced understanding of creative thinking, where the necessity 

of deliberation depends on both task-related factors, such as the semantic search space, and 

interindividual differences. For instance, individuals with a more efficient semantic memory 

structure may rely less on costly deliberative thinking, aligning with neuroimaging studies that 

suggest greater neural efficiency during creative tasks for more creative people (Chen et al., 2025; 

Chrysikou et al., 2020; Herault et al., 2024; Japardi et al., 2018). Similarly, we can predict that 

tasks requiring the establishment of more distant connections, or which strongly elicit an incorrect, 

intuitive answer, will benefit more from deliberation (e.g., the egg task; Camarda et al., 2024), 

highlighting the need to generalize these findings beyond CRA to other forms of creative 

generation. In this respect, our findings align with recent theories that offer a more nuanced view 
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of the interplay between intuitive and deliberate processes in creativity. The “distance-dependent 

representation activation mode” hypothesis (D-DRAM; Volle, 2018), for instance, suggests a 

dynamic balance between associative and controlled processes, influenced by task demands, the 

phase of the creative process, and interindividual differences. However, while the D-DRAM 

hypothesis emphasizes the role of controlled processes in the evaluative phase of creativity—such 

as inhibiting common ideas—our results point toward a complementary perspective: the evaluative 

phase of creativity can still occur effectively even when deliberation is minimized.  

Interestingly, the findings from our experiments nicely align with those observed in the 

logical reasoning field, where people are often able to produce correct responses intuitively (e.g., 

Bago & De Neys, 2017, 2019b; Thompson & Johnson, 2014). This automatic access to logical and 

probabilistic rules has led to the hypothesis of “logical intuitions” (De Neys, 2012; Handley & 

Trippas, 2015; Thompson & Newman, 2017). However, the precise nature of these intuitions 

remains a subject of ongoing debate in the reasoning field (De Neys, 2023). Recent experimental 

work has shown that these intuitions may, in fact, not rely on logical rules and operations, but rather 

on external surface cues that only align with logic (e.g., Ghasemi et al., 2022, 2023; Meyer-Grant 

et al., 2023). Importantly, unlike in the reasoning domain, where the exact nature of intuitions is 

more difficult to characterize, our computational and semantic analyses allow us to constrain 

plausible mechanisms underlying sound intuitive thinking in creative problem-solving. Our 

findings suggest that, in this context, intuition operates through the rapid associative activation 

between concepts, providing a mechanistic explanation for sound intuitive thinking. At the same 

time, it also allows us to specify their boundary condition, as the likelihood of sound intuitive 

thinking decreases as the semantic distance between the solution word and the problem cues 

increases. 



 31 

  

Although we did not include any direct measure of cognitive capacity (e.g., Raven’s 

Matrices) in this study, future research could examine how well such a measure predicts intuitive 

performance in the CRA beyond our associative thinking and semantic memory structure measures. 

This question is particularly relevant because convergent thinking tasks such as the CRA may 

assess intelligence rather than creativity per se (Chuderski & Jastrzębski, 2018). Such a finding 

would also align with emerging evidence from the reasoning literature suggesting that cognitive 

capacity would be a better predictor of sound intuitive thinking than correct deliberation in 

reasoning (Raoelison et al., 2020; Thompson et al., 2018).  

To avoid any misinterpretation, we emphasize that our use of the dual-process framework 

and the labels “intuitive” and “deliberative” is primarily intended as a pragmatic tool for 

communicating among scholars. In this study, “intuition” was defined operationally: we combined 

task instructions, time pressure, and concurrent load to reduce the engagement of cognitive 

resources during the initial response stage of our paradigm. However, the two-response paradigm 

cannot, by itself, resolve the broader debate about whether a given response is truly "intuitive" or 

"deliberative" in nature. Accordingly, our results do not imply that the distinction between intuitive 

and deliberate thinking is qualitative rather than quantitative. The current data are equally 

compatible with a single-process account in which intuition and deliberation are conceived as 

opposite ends of a processing continuum (De Neys, 2021; Hayes et al., 2018). We therefore do not 

take a position in this broader debate. Instead, our key point is that the intuitive end of the 

processing continuum may be more capable than traditionally assumed, and that converging on the 

correct response in the CRA does not necessarily require engaging additional cognitive resources 

or extended deliberation. 



 32 

  

Although we designed our study to cover a broad range of difficulty using items adapted 

from Bowden and Jung-Beeman (2003), a potential concern is that strong intuitive performance 

may be due to selecting relatively easier items than those typically found in the literature. To 

address this, we compared our results with other CRA studies and found that the combined average 

accuracy in the final response stage (61%) falls within the typical range reported in the literature 

(42%–80%; see Appendix I). Thus, our items are neither exceptionally easy nor difficult.  

Another potential criticism may be that the presence of sound intuitive thinking in our studies 

was due to the fact that our methodology did not sufficiently hamper deliberation in the initial 

response stage. It is worth noting that we combined three established procedures (instructions, time 

constraints, and cognitive load) to ensure that reasoners could not engage in deliberation. These 

methods have all been demonstrated to be effective in limiting deliberation. Furthermore, the 

chosen time limit was calibrated using a pilot study in Experiment 1 (see Section 2.6.1.). In 

Experiment 2, we introduced an even more stringent cognitive load task and time limit to further 

minimize the possibility of engaging in deliberation. The high number of excluded trials (20.1% in 

Experiment 1; 36.7% in Experiment 2) indicates that using a more demanding deadline or load 

would have created practical and statistical issues, such as selection effects at the subject level 

(Bouwmeester et al., 2017). However, we acknowledge that it remains possible some participants 

engaged in deliberation during the initial response stage, despite our methodological constraints. 

One possible concern is that participants may have strategically safeguarded their 

performance on the CRA, by prioritizing the CRA items over responding before the deadline or 

succeeding in the cognitive load task. If so, this strategy would likely be more common on difficult 

CRA items, where cognitive demand is greater. Such behavior could artificially inflate apparent 

intuitive performance in the initial stage due to trial exclusions, as previously noted (e.g., Stuyck 
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et al., 2022). More precisely, if excluded trials disproportionately involved difficult items, their 

removal could lead to an overestimation of correct intuitive responses through selective truncation 

of errors on harder items. To address this concern, we conducted additional analyses in which 

missed-deadline trials were conservatively recoded as incorrect. Although the prevalence of sound 

intuitive thinking decreased slightly under this stricter approach, it remained very high (see 

Appendix J). Thus, our main findings are robust even under conservative assumptions about trial 

exclusions.  

Note that one could still argue that the response deadline and the cognitive load we used were 

not challenging enough and that the correct initial responses we observed would disappear “with 

just a little more load or time pressure”. However, such arguments make dual-process theories 

difficult to falsify at this point, as any evidence for sound intuitive thinking can always be dismissed 

by arguing that the methods left space for deliberation. From a more theoretical perspective, the 

issue lies in the fact that dual-process theories are not fully specified (Kruglanski, 2013). The 

framework typically suggests that System 2 operates more slowly and requires more cognitive 

resources than System 1, yet it does not provide a clear a priori criterion for determining whether 

a process is intuitive or deliberate (e.g., requires at least x amount of time or cognitive load; De 

Neys, 2023).  

Conversely, we cannot entirely rule out the possibility that participants relied on intuitive 

rather than deliberative processes during the final response stage. Although our data indicated that 

response times in the final stage of the two-response paradigm were not shorter than in the one-

response pre-test, future research could investigate whether performance in the final stage might 

be further enhanced by explicitly promoting deliberation (e.g., through incentives or instructional 

manipulations). 
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To conclude, the present paper shows that convergent thinking does not necessarily require 

extended deliberation: under strong time and resource constraints, correct solutions can emerge 

through associative processes supported by semantic memory. 

5. Declaration of generative AI and AI-assisted technologies in the writing process 

During the preparation of this work, the authors used OpenAI's GPT-4 model (2023) to 

proofread the manuscript for grammatical and stylistic improvements. After using this tool, the 

authors reviewed and edited the content as needed and take full responsibility for the content of the 

published article. 

 

Acknowledgements: This research was supported by a grant from the Agence Nationale de la 

Recherche, France (ANR-23-CE28-0004-01). We would like to thank Dr. Esther Boissin and Dr. 

Aikaterini Voudouri for their contributions to the initial discussion and design of our experiments. 

Ethics statement: All experimental procedures were conducted in accordance with relevant laws 

and institutional guidelines and approved by the institutional ethics committee (CER U-Paris; 

approval date: December 17, 2019). The privacy rights of all human subjects were strictly 

observed, and informed consent was obtained from all participants involved in the study. 

Credit author statement: Jérémie Beucler: Conceptualization, Data curation, Formal analysis, 

Investigation, Methodology, Project administration, Software, Validation, Visualization, Writing - 

original draft, Writing - review & editing. Wim De Neys: Conceptualization, Funding acquisition, 

Methodology, Project administration, Resources, Supervision, Writing - review & editing. 

 



 35 

  

References 

Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity 

Research Journal, 23(2), 109–118. https://doi.org/10.1080/10400419.2011.571183 

Ardila, A., Ostrosky-Solís, F., & Bernal, B. (2006). Cognitive testing toward the future: The 

example of Semantic Verbal Fluency (ANIMALS). International Journal of Psychology, 41(5), 

324–332. https://doi.org/10.1080/00207590500345542 

Bago, B., Bonnefon, J.-F., & De Neys, W. (2021). Intuition rather than deliberation 

determines selfish and prosocial choices. Journal of Experimental Psychology: General, 150(6), 

1081. https://doi.org/10.1037/xge0000968 

Bago, B., & De Neys, W. (2017). Fast logic?: Examining the time course assumption of dual 

process theory. Cognition, 158, 90–109. https://doi.org/10.1016/j.cognition.2016.10.014 

Bago, B., & De Neys, W. (2019a). The intuitive greater good: Testing the corrective dual 

process model of moral cognition. Journal of Experimental Psychology: General, 148(10), 1782–

1801. https://doi.org/10.1037/xge0000533 

Bago, B., & De Neys, W. (2019b). The smart System 1: Evidence for the intuitive nature of 

correct responding on the bat-and-ball problem. Thinking & Reasoning, 25(3), 257–299. 

https://doi.org/10.1080/13546783.2018.1507949 

Barr, N., Pennycook, G., Stolz, J. A., & Fugelsang, J. A. (2014). Reasoned connections: A 

dual-process perspective on creative thought. Thinking & Reasoning, 21(1), 61–75. 

https://doi.org/10.1080/13546783.2014.895915 

https://doi.org/10.1080/10400419.2011.571183
https://doi.org/10.1080/00207590500345542
https://doi.org/10.1037/xge0000968
https://doi.org/10.1016/j.cognition.2016.10.014
https://doi.org/10.1037/xge0000533
https://doi.org/10.1080/13546783.2018.1507949
https://doi.org/10.1080/13546783.2014.895915


 36 

  

Beaty, R. E., & Kenett, Y. N. (2023). Associative thinking at the core of creativity. Trends 

in Cognitive Sciences. https://doi.org/10.1016/j.tics.2023.04.004 

Beaty, R. E., Zeitlen, D. C., Baker, B. S., & Kenett, Y. N. (2021). Forward flow and creative 

thought: Assessing associative cognition and its role in divergent thinking. Thinking Skills and 

Creativity, 41, 100859. https://doi.org/10.1016/j.tsc.2021.100859 

Benedek, M., Beaty, R. E., Schacter, D. L., & Kenett, Y. N. (2023). The role of memory in 

creative ideation. Nature Reviews Psychology, 2(4), 246–257. https://doi.org/10.1038/s44159-

023-00158-z 

Benedek, M., Kenett, Y. N., Umdasch, K., Anaki, D., Faust, M., & Neubauer, A. C. (2017). 

How semantic memory structure and intelligence contribute to creative thought: a network science 

approach. Thinking & Reasoning, 23(2), 158–183. 

https://doi.org/10.1080/13546783.2016.1278034 

Beucler, J., Voudouri, A., & De Neys, W. (2025). Moses illusions, fast and slow. Journal of 

Experimental Psychology: Learning, Memory, and Cognition. Advance online publication. 

https://doi.org/10.1037/xlm0001530 

Bialek, M., & De Neys, W. (2017). Dual processes and moral conflict: Evidence for 

deontological reasoners’ intuitive utilitarian sensitivity. Judgment and Decision Making, 12(2), 

148. https://doi.org/10.1017/S1930297500005696 

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to 

meta-analysis. John wiley & sons. https://doi.org/10.1002/9780470743386 

Bouwmeester, S., Verkoeijen, P. P., Aczel, B., Barbosa, F., Bègue, L., Brañas-Garza, P., 

Chmura, T. G., Cornelissen, G., Døssing, F. S., & Espín, A. M. (2017). Registered replication 

https://doi.org/10.1016/j.tics.2023.04.004
https://doi.org/10.1016/j.tsc.2021.100859
https://doi.org/10.1038/s44159-023-00158-z
https://doi.org/10.1038/s44159-023-00158-z
https://doi.org/10.1080/13546783.2016.1278034
https://psycnet.apa.org/doi/10.1037/xlm0001530
https://doi.org/10.1017/S1930297500005696
https://doi.org/10.1002/9780470743386


 37 

  

report: Rand, Greene, and Nowak (2012). Perspectives on Psychological Science, 12(3), 527–542. 

https://doi.org/10.1177/1745691617693624 

Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote 

associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634–639. 

https://doi.org/10.3758/BF03195543 

Burič, R., & Konrádová, L. (2021). Mindware instantiation as a predictor of logical intuitions 

in the Cognitive Reflection Test. Studia Psychologica, 63(2), 114–128. 

https://doi.org/10.31577/sp.2021.02.822 

Burič, R., & Šrol, J. (2020). Individual differences in logical intuitions on reasoning problems 

presented under two-response paradigm. Journal of Cognitive Psychology, 32(4), 460–477. 

https://doi.org/10.1080/20445911.2020.1766472 

Camarda, A., De Neys, W., Ozkalp-Poincloux, B., Hooge, S., Le Masson, P., Weil, B., & 

Cassotti, M. (2024). Detecting fixation bias in creative idea generation: Evidence from design 

novices and experts. Creativity Research Journal, 1-21. 

https://doi.org/10.1080/10400419.2024.2424620 

Cassotti, M., Agogué, M., Camarda, A., Houdé, O., & Borst, G. (2016). Inhibitory Control 

as a Core Process of Creative Problem Solving and Idea Generation from Childhood to Adulthood. 

New directions for child and adolescent development, 2016(151), 61–72. 

https://doi.org/10.1002/cad.20153 

Chen, Q., Kenett, Y. N., Cui, Z., Takeuchi, H., Fink, A., Benedek, M., Zeitlen, D. C., Zhuang, 

K., Lloyd-Cox, J., Kawashima, R., Qiu, J., & Beaty, R. E. (2025). Dynamic switching between 

https://doi.org/10.1177/1745691617693624
https://doi.org/10.3758/BF03195543
https://doi.org/10.31577/sp.2021.02.822
https://doi.org/10.1080/20445911.2020.1766472
https://doi.org/10.1080/10400419.2024.2424620
https://doi.org/10.1002/cad.20153


 38 

  

brain networks predicts creative ability. Communications Biology, 8(1), 54. 

https://doi.org/10.1038/s42003-025-07470-9 

Christensen, A. P., & Kenett, Y. N. (2023). Semantic network analysis (SemNA): A tutorial 

on preprocessing, estimating, and analyzing semantic networks. Psychological methods, 28(4), 

860–879. https://doi.org/10.1037/met0000463 

Chrysikou, E. G., Jacial, C., Yaden, D. B., van Dam, W., Kaufman, S. B., Conklin, C. J., 

Wintering, N. A., Abraham, R. E., Jung, R. E., & Newberg, A. B. (2020). Differences in brain 

activity patterns during creative idea generation between eminent and non-eminent thinkers. 

NeuroImage, 220, 117011. https://doi.org/10.1016/j.neuroimage.2020.117011 

Chuderski, A., & Jastrzębski, J. (2018). Much ado about aha!: Insight problem solving is 

strongly related to working memory capacity and reasoning ability. Journal of Experimental 

Psychology: General, 147(2), 257–281. https://doi.org/10.1037/xge0000378 

De Neys, W. (2012). Bias and Conflict: A Case for Logical Intuitions. Perspectives on 

Psychological Science, 7(1), 28-38. https://doi.org/10.1177/1745691611429354 

De Neys, W. (2021). On dual-and single-process models of thinking. Perspectives on 

Psychological Science, 16(6), 1412–1427. https://doi.org/10.1177/1745691620964172 

De Neys, W. (2023). Advancing theorizing about fast-and-slow thinking. Behavioral and 

Brain Sciences, 1–68. https://doi.org/10.1017/S0140525X2200142X 

De Neys, W., & Verschueren, N. (2006). Working memory capacity and a notorious brain 

teaser: the case of the Monty Hall Dilemma. Experimental psychology, 53(2), 123–131. 

https://doi.org/10.1027/1618-3169.53.1.123 

https://doi.org/10.1038/s42003-025-07470-9
https://doi.org/10.1037/met0000463
https://doi.org/10.1016/j.neuroimage.2020.117011
https://psycnet.apa.org/doi/10.1037/xge0000378
https://doi.org/10.1177/1745691611429354
https://doi.org/10.1177/1745691620964172
https://doi.org/10.1017/S0140525X2200142X
https://doi.org/10.1027/1618-3169.53.1.123


 39 

  

Evans, J. S., & Stanovich, K. E. (2013). Dual-Process Theories of Higher Cognition: 

Advancing the Debate. Perspectives on psychological science : a journal of the Association for 

Psychological Science, 8(3), 223–241. https://doi.org/10.1177/1745691612460685 

Ghasemi, O., Handley, S., Howarth, S., Newman, I. R., & Thompson, V. A. (2022). Logical 

intuition is not really about logic. Journal of Experimental Psychology: General, 151(9), 2009–

2028. https://doi.org/10.1037/xge0001179 

Ghasemi, O., Handley, S. J., & Howarth, S. (2023). Illusory intuitive inferences: Matching 

heuristics explain logical intuitions. Cognition, 235, 105417. 

https://doi.org/10.1016/j.cognition.2023.105417 

Gray, K., Anderson, S., Chen, E. E., Kelly, J. M., Christian, M. S., Patrick, J., Huang, L., 

Kenett, Y. N., & Lewis, K. (2019). "Forward flow": A new measure to quantify free thought and 

predict creativity. The American psychologist, 74(5), 539–554. 

https://doi.org/10.1037/amp0000391 

Greene, J., & Haidt, J. (2002). How (and where) does moral judgment work?. Trends in 

cognitive sciences, 6(12), 517-523. https://doi.org/10.1016/S1364-6613(02)02011-9 

Handley, S. J., & Trippas, D. (2015). Dual processes and the interplay between knowledge 

and structure: A new parallel processing model. In Psychology of learning and motivation (Vol. 

62, pp. 33-58). Academic Press. https://doi.org/10.1016/bs.plm.2014.09.002 

Hayes, B. K., Stephens, R. G., Ngo, J., & Dunn, J. C. (2018). The dimensionality of 

reasoning: Inductive and deductive inference can be explained by a single process. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 44(9), 1333. 

https://doi.org/10.1037/xlm0000527 

https://doi.org/10.1177/1745691612460685
https://psycnet.apa.org/doi/10.1037/xge0001179
https://doi.org/10.1016/j.cognition.2023.105417
https://doi.org/10.1037/amp0000391
https://doi.org/10.1016/S1364-6613(02)02011-9
https://doi.org/10.1016/bs.plm.2014.09.002
https://doi.org/10.1037/xlm0000527


 40 

  

He, L., Kenett, Y. N., Zhuang, K., Liu, C., Zeng, R., Yan, T., Huo, T., & Qiu, J. (2020). The 

relation between semantic memory structure, associative abilities, and verbal and figural creativity. 

Thinking & Reasoning, 27(2), 268–293. https://doi.org/10.1080/13546783.2020.1819415 

Herault, C., Ovando-Tellez, M., Lebuda, I., Kenett, Y. N., Beranger, B., Benedek, M., & 

Volle, E. (2024). Creative connections: the neural correlates of semantic relatedness are associated 

with creativity. Communications biology, 7(1), 810. https://doi.org/10.1038/s42003-024-06493-y 

Japardi, K., Bookheimer, S., Knudsen, K., Ghahremani, D. G., & Bilder, R. M. (2018). 

Functional magnetic resonance imaging of divergent and convergent thinking in Big-C creativity. 

Neuropsychologia, 118(Pt A), 59–67. https://doi.org/10.1016/j.neuropsychologia.2018.02.017 

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.  

Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic 

networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407. 

https://doi.org/10.3389/fnhum.2014.00407 

Kenett, Y. N., Levy, O., Kenett, D. Y., Stanley, H. E., Faust, M., & Havlin, S. (2018). 

Flexibility of thought in high creative individuals represented by percolation analysis. Proceedings 

of the National Academy of Sciences, 115(5), 867–872. https://doi.org/10.1073/pnas.1717362115 

Koriat, A. (2017). Can people identify “deceptive” or “misleading” items that tend to produce 

mostly wrong answers? Journal of Behavioral Decision Making, 30(5), 1066–1077. 

https://doi.org/10.1002/bdm.2024 

Kruglanski, A. W. (2013). Only one? The default interventionist perspective as a unimodel—

Commentary on Evans & Stanovich (2013). Perspectives on Psychological Science, 8(3), 242–

247. https://doi.org/10.1177/1745691613483477 

https://doi.org/10.1080/13546783.2020.1819415
https://doi.org/10.1038/s42003-024-06493-y
https://doi.org/10.1016/j.neuropsychologia.2018.02.017
https://doi.org/10.3389/fnhum.2014.00407
https://doi.org/10.1073/pnas.1717362115
https://doi.org/10.1002/bdm.2024
https://doi.org/10.1177/1745691613483477


 41 

  

Luchini, S., Kenett, Y. N., Zeitlen, D. C., Christensen, A. P., Ellis, D. M., Brewer, G. A., & 

Beaty, R. E. (2023). Convergent thinking and insight problem solving relate to semantic memory 

network structure. Thinking Skills and Creativity, 48, 101277. 

https://doi.org/10.1016/j.tsc.2023.101277 

Marko, M., Michalko, D., & Riečanský, I. (2019). Remote associates test: An empirical proof 

of concept. Behavior research methods, 51(6), 2700-2711. https://doi.org/10.3758/s13428-018-

1131-7 

Mata, A., Ferreira, M. B., & Reis, J. (2013). A process-dissociation analysis of semantic 

illusions. Acta Psychologica, 144(2), 433–443. https://doi.org/10.1016/j.actpsy.2013.08.001 

Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 

69(3), 220. https://doi.org/10.1037/h0048850 

Meyer-Grant, C. G., Cruz, N., Singmann, H., Winiger, S., Goswami, S., Hayes, B. K., & 

Klauer, K. C. (2023). Are logical intuitions only make-believe? Reexamining the logic-liking 

effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(8), 1280–1305. 

https://doi.org/10.1037/xlm0001152 

Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are 

visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable 

analysis. Journal of Experimental Psychology: General, 130(4), 621. https://doi.org/10.1037/0096-

3445.130.4.621  

OpenAI. (2023). Gpt-4 technical report. arXiv. https://doi.org/10.48550/arXiv.2303.08774 

Ovando-Tellez, M., Kenett, Y., Benedek, M., Hills, T., Beranger, B., Lopez-Perseem, A., & 

Volle, E. (2024). Switching, fast and slow: Deciphering the dynamics of memory search, its brain 

https://doi.org/10.1016/j.tsc.2023.101277
https://doi.org/10.3758/s13428-018-1131-7
https://doi.org/10.3758/s13428-018-1131-7
https://doi.org/10.1016/j.actpsy.2013.08.001
https://doi.org/10.1037/h0048850
https://psycnet.apa.org/doi/10.1037/xlm0001152
https://doi.org/10.1037/0096-3445.130.4.621
https://doi.org/10.1037/0096-3445.130.4.621
https://doi.org/10.48550/arXiv.2303.08774


 42 

  

connectivity patterns, and its role in creativity. Research Square. https://doi.org/10.21203/rs.3.rs-

3826172/v1 

Rand, D. G., Greene, J. D., & Nowak, M. A. (2012). Spontaneous giving and calculated 

greed. Nature, 489(7416), 427-430. https://doi.org/10.1038/nature11467 

Raoelison, M., Thompson, V. A., & De Neys, W. (2020). The smart intuitor: Cognitive 

capacity predicts intuitive rather than deliberate thinking. Cognition, 204, 104381. 

https://doi.org/10.1016/j.cognition.2020.104381 

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese 

BERT-networks. arXiv. https://doi.org/10.18653/v1/D19-1410 

Reyna, V. F. (2012). A new intuitionism: Meaning, memory, and development in fuzzy-trace 

theory. Judgment and Decision making, 7(3), 332-359. 

https://doi.org/10.1017/S1930297500002291 

Rossmann, E., & Fink, A. (2010). Do creative people use shorter associative pathways? 

Personality and Individual Differences, 49(8), 891–895. 

https://doi.org/10.1016/j.paid.2010.07.025 

Sowden, P. T., Pringle, A., & Gabora, L. (2019). The shifting sands of creative thinking: 

Connections to dual-process theory. In Insight and Creativity in Problem Solving (pp. 40–60). 

Routledge. https://doi.org/10.4324/9781315144061-3 

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for 

the rationality debate? Behavioral and Brain Sciences, 23(5), 645–665. 

https://doi.org/10.1017/S0140525X00003435 

https://doi.org/10.21203/rs.3.rs-3826172/v1
https://doi.org/10.21203/rs.3.rs-3826172/v1
https://doi.org/10.1038/nature11467
https://doi.org/10.1016/j.cognition.2020.104381
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1017/S1930297500002291
https://doi.org/10.1016/j.paid.2010.07.025
https://doi.org/10.4324/9781315144061-3
https://doi.org/10.1017/S0140525X00003435


 43 

  

Stuyck, H., Cleeremans, A., & Van den Bussche, E. (2022). Aha! Under pressure: The Aha! 

Experience is not constrained by cognitive load. Cognition, 219, 104946. 

https://doi.org/10.1016/j.cognition.2021.104946 

Thompson, V. A., & Johnson, S. C. (2014). Conflict, metacognition, and analytic thinking. 

Thinking & Reasoning, 20(2), 215–244. https://doi.org/10.1080/13546783.2013.869763 

Thompson, V. A., & Newman, I. R. (2017). Logical intuitions and other conundra for dual 

process theories. In Dual process theory 2.0 (pp. 121-136). Routledge. 

https://doi.org/10.4324/9781315204550  

Thompson, V. A., Pennycook, G., Trippas, D., & Evans, J. S. B. (2018). Do smart people 

have better intuitions?. Journal of Experimental Psychology: General, 147(7), 945. 

https://doi.org/10.1037/xge0000457 

Thompson, V. A., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and 

metacognition. Cognitive Psychology, 63(3), 107–140. 

https://doi.org/10.1016/j.cogpsych.2011.06.001 

Topolinski, S., & Strack, F. (2009). Scanning the “fringe” of consciousness: What is felt and 

what is not felt in intuitions about semantic coherence. Consciousness and cognition, 18(3), 608-

618. https://doi.org/10.1016/j.concog.2008.06.002 

Trémolière, B., & Bonnefon, J.-F. (2014). Efficient kill–save ratios ease up the cognitive 

demands on counterintuitive moral utilitarianism. Personality and Social Psychology Bulletin, 

40(7), 923–930. https://doi.org/10.1177/0146167214530436 

https://doi.org/10.1016/j.cognition.2021.104946
https://doi.org/10.1080/13546783.2013.869763
https://doi.org/10.4324/9781315204550
https://doi.org/10.1037/xge0000457
https://doi.org/10.1016/j.cogpsych.2011.06.001
https://doi.org/10.1016/j.concog.2008.06.002
https://doi.org/10.1177/0146167214530436


 44 

  

Trémolière, B., De Neys, W., & Bonnefon, J.-F. (2012). Mortality salience and morality: 

Thinking about death makes people less utilitarian. Cognition, 124(3), 379–384. 

https://doi.org/10.1016/j.cognition.2012.05.011 

Verschueren, N., Schaeken, W., & d'Ydewall, G. (2004). Everyday conditional reasoning 

with working memory preload. Proceedings of the Annual Meeting of the Cognitive Science 

Society, 26. Retrieved from https://escholarship.org/uc/item/7kk1x3qx 

Volle, E. (2018). Associative and controlled cognition in divergent thinking: Theoretical, 

experimental, neuroimaging evidence, and new directions. In R. E. Jung & O. Vartanian (Eds.), 

The Cambridge handbook of the neuroscience of creativity (pp. 333–360). Cambridge University 

Press. https://doi.org/10.1017/9781316556238.020 

Voudouri, A., Bago, B., Borst, G., & De Neys, W. (2023). Reasoning and cognitive control, 

fast and slow. Judgment and Decision Making, 18, e33. https://doi.org/10.1017/jdm.2023.32 

Zemla, J. C., & Austerweil, J. L. (2018). Estimating semantic networks of groups and 

individuals from fluency data. Computational brain & behavior, 1(1), 36-58. 

https://doi.org/10.1007/s42113-018-0003-7 

  

https://doi.org/10.1016/j.cognition.2012.05.011
https://escholarship.org/uc/item/7kk1x3qx
https://psycnet.apa.org/doi/10.1017/9781316556238.020
https://doi.org/10.1017/jdm.2023.32
https://doi.org/10.1007/s42113-018-0003-7


 45 

  

Appendices - Intuitive Insight: Fast Associative Processes Drive Sound 
Creative Thinking 

 

A. CRA Problems 

Table A.1. List of the CRA items used in our experiments. 

Item number CRA problem Solution Solution type 

1 EXTINGUISHER/TRUCK/CAMP FIRE MIXED 

2 SURF/PADDLE/SKATE BOARD BACK 

3 FOOT/BASKET/VOLLEY BALL BACK 

4 JAY/MOCKING/FLU BIRD MIXED 

5 DEW/COMB/BEE HONEY FRONT 

6 LOSER/THROAT/SPOT SORE FRONT 

7 DUCK/FOLD/DOLLAR BILL MIXED 

8 BEAT/RATE/DISEASE HEART FRONT 

9 LIGHT/BIRTHDAY/STICK CANDLE MIXED 

10 OPERA/HAND/DISH SOAP MIXED 

11 PALM/SHOE/HOUSE TREE MIXED 

12 PLANE/SHIP/LINE AIR FRONT 

13 MOUSE/DEATH/SAND TRAP BACK 

14 RING/BOOK/SILK WORM BACK 

15 SHINE/LIGHT/BEAM SUN/MOON FRONT 

16 SENSE/COURTESY/PLACE COMMON FRONT 

17 WET/DRY/FARM LAND BACK 
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Item number CRA problem Solution Solution type 

18 SPOON/CLOTH/CARD TABLE/TEA MIXED 

19 RAIN/TEST/STOMACH ACID MIXED 

20 COVER/ARM/WEAR UNDER/BAND FRONT 

21 CUT/CREAM/WAR COLD FRONT 

22 BABY/SPRING/CAP SHOWER MIXED 

23 OFF/MILITARY/FIRST BASE BACK 

24 LINE/TABLE/SCALE TIME FRONT 

 

Note. Solution type refers to whether the solution word must be appended to the front of the cue 

words, to the back, or both (“mixed”). 
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B. Data preprocessing 

B.1. CRA Task 

To account for typing or orthographic mistakes in the CRA responses, we computed the 

Levenshtein distance between each response and solution strings, which measures the minimum 

number of single-character edits required to transform one string into another. For instance, the 

two strings “RRAO” and “TRAP” have a Levenshtein distance of 2. If the computed distance was 

less than or equal to 2, the response was manually coded as correct when it matched the correct 

response. Furthermore, in contrast to previous studies, we included alternative correct answers for 

three CRA items when participants’ responses formed meaningful compound words. When both 

experimenters agreed that an “incorrect” response was valid, it was accepted as correct and added 

to the list of possible solutions for that CRA item (see Appendix F). 

B.2. Animal Fluency Task 

To preprocess the animal fluency data for our associative thinking analyses, we used the 

SemNetCleaner package in R (Christensen, 2019), following Christensen and Kenett (2021). The 

SemNetCleaner package offers a standardized method for preprocessing raw verbal fluency data. 

First, the pipeline removes non-category members (e.g., tree, unicorn) and duplicate participant 

responses. Subsequently, it corrects spelling errors, compound responses, root word variations, and 

continuous strings automatically. Finally, one of the researchers manually corrected the remaining 

words that were not recognized by the software. 
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C. Instructions 

C.1. Two-Response Paradigm 

After signing a consent form, participants received the following instructions: 

Please read these instructions carefully! 

In this experiment you will have to solve 24 word puzzle problems and 9 practice problems. 

The word problems will be presented to you one after the other and you should not pause 
between them. You can take a short break in the middle of the experiment. 

It is important that you complete the experiment in one sitting and without distractions. 

 

During the experiment, in each trial you will be presented with three words. The goal is to find a 
fourth word that you can attach to each of these three words so that three new meaningful 
compound words are created. 

For example, the three words BRUSH/PASTE/PICK are connected by the word TOOTH, 
because with the word TOOTH the compound words 
TOOTHBRUSH/TOOTHPASTE/TOOTHPICK can be formed. 

Similarly, the three words RIVER/NOTE/ACCOUNT are connected by the word BANK, 
because with the word BANK the compound words RIVERBANK/BANKNOTE/BANK 
ACCOUNT can be formed. 

For every word puzzle, the solution is always a word that you can only add either to the front or 
to the back of each of the three words. 

Once you have found the solution, enter your answer and press “Enter”. 

If you really can’t find the solution after thinking about it, press “Enter” to go to the next puzzle. 

Do your best to solve as many puzzles as possible. 

 

After you have solved a word puzzle, indicate your confidence in your solution. You can do 
this by using the cursor of the mouse to choose a position on a horizontal scale between “low 
confidence” and “high confidence”. 

 

Finally, you must indicate whether you have solved this word puzzle “with Aha!” or “without 
Aha!”. 
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With Aha!: with an Aha! experience you become aware of the solution suddenly and clearly. 
This can be accompanied by a sense of revelation and relief. 

Without Aha!: Unlike an Aha! feeling, finding a solution with analysis is characterized by a 
step-by-step search process. 

Imagine a dark room that is suddenly lit up (with Aha!) or slowly lit with a dimmer switch 
(without Aha!). We ask you to indicate after each word puzzle if you have solved it “with Aha!” 
or “without Aha!”. 

 

We are going to start with 3 practice puzzles. 

For each puzzle, a fixation cross will appear first. Then, the three words will be presented. 

  

Participants were then given three CRA practice trials with no cognitive load or deadline. 

Importantly, they received feedback about the correct response on each trial. They were then 

familiarized with the two-response paradigm: 

That was the first practice. 

In this experiment, we want to know what your initial, intuitive response to these word puzzles 
is and how you respond after you have thought about the word puzzles for some more time. 

 

Hence, as soon as the word puzzle is presented, we will ask you to enter your intuitive response. 

We want you to respond with the very first answer that comes to mind. You don’t need to 
think about it. Just give the first answer that intuitively comes to mind as quickly as possible. 

Next, the word puzzle will be presented again and you can take all the time you want to 
actively reflect on it. Once you have made up your mind you enter your final response. You will 
have as much time as you need to indicate your second response. 

In sum, keep in mind that it is really crucial that you give your first, initial response as fast as 
possible. 

 
Afterwards, you can take as much time as you want to reflect on the word puzzle and select 
your final response. 
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We are going to start with a couple of practice problems. From now on we will not be providing 
feedback on your responses to the practice problems. 

First, a fixation cross will appear. 

Then, the word puzzle will be presented. 

As we told you, we are interested in your initial, intuitive response. First, we want you to respond 
with the very first answer that comes to mind. You don’t need to think about it. Just give the first 
answer that intuitively comes to mind as quickly as possible. 

To make sure that you answer as fast as possible, a time limit was set for the first response, 
which is going to be 8 seconds (Experiment 1) / 6 seconds (Experiment 2). 

When there are 2 seconds (Experiment 1) / 1 second (Experiment 2) left, the background color 
will turn to yellow to let you know that the deadline is approaching. Please make sure to enter a 
response before the deadline passes. If you really can’t think of a word, make sure to press 
“Enter” instead of letting the trial pass. 

Next, the word puzzle will be presented again and you can take all the time you want to 
actively reflect on it. Once you have made up your mind you enter your final response. 

After you have made your choice and click on it, you will be automatically taken to the next 
page. 

  

Participants were then given two two-response trials without the concurrent cognitive load, 

without feedback this time. They were then introduced to the cognitive load task: 

You will also need to memorize a pattern while you solve the word puzzles. 

You will see a grid with crosses and you will have to memorize their location. 

You will first practice with 2 patterns without a word puzzle. 

The pattern will be displayed for 2 seconds and then you will have to select it among 4 different 
patterns. 

  

Participants had then to do two practice trials for the cognitive load task without the CRA 

problems. Following this, they were provided with the following instructions: 

In the actual study you will need to memorize the pattern while you give your initial, intuitive 
response to the word puzzle. The pattern is briefly presented before each problem. You do not 
have to memorize a pattern during your second, final response. 
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The difficulty of the pattern might vary. Always try to memorize as many crosses as possible. 
Each cross counts! 

We know that it is not always easy to memorize the pattern while you are also thinking about the 
word puzzle. The most important thing is to correctly memorize the pattern. 

First, try to concentrate on the memorization task, and then try to solve the word puzzle. 

As a next step, you can practice this with two word puzzles. 

  

After those two last practice trials, participants received the following instructions: 

This is the end of practice. 

The questions will be presented to you one after the other and you should not pause between 
them. After the first 12 questions, you will be invited to take a short break. 

Please stay as focused as possible and try to solve as many problems as you can. 

 
Remember, if you really don’t know the response to a word puzzle, make sure to press “Enter” 
instead of letting the trial pass. 

 

C.2. Animal Fluency Task (Experiment 2) 

At the end of the CRA problems in Experiment 2, participants received the following 

instructions: 

In this task you have to write the names of as many different animals as you can think of in 
three minutes, as quickly as possible. 
 
Type the name of an animal and press Enter to type the next one. 

You will be automatically taken to the next page when the three minutes have passed. Please 
keep writing animal names until the time runs out. 
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D. The “Aha” Experience Indexes Response Fluency Rather Than Sound Intuiting 

The high prevalence of sound intuiting we observed could potentially be driven by insight 

problem-solving (i.e., the “Aha!” moment). Indeed, if insight problem-solving relies on intuitive, 

Type 1 processes to reach the correct solution, a high prevalence of insight responses may account 

for these findings. At the phenomenological level, insight problem-solving was associated with 

higher confidence ratings in both the initial and final response stages. Fig. A.1a provides a summary 

of the initial and final confidence levels as a function of solution type. 

 To analyze these findings, we built a beta generalized mixed-effects model for each 

experiment, analyzing confidence as a function of response stage, insight, and their interaction 

using sum coding. The results from Experiment 1 indicated that confidence ratings were 

significantly higher in the final than in the initial response stage, OR = 1.35, p < .001, Cohen’s d = 

0.17, 95% CI [0.13, 0.20], as well as for insight compared to non-insight solutions, OR = 1.99, p < 

.001, Cohen’s d = 0.38, 95% CI [0.32, 0.44]. The interaction term between insight and response 

stage was also significant, OR = 0.90, p < .001, Cohen’s d = -0.06, 95% CI [-0.08, -0.04]. Post-hoc 

tests showed that the effect of response stage on confidence was significant both for non-insight 

responses, OR = 0.44, Z = -11.52, p < .001, and for insight responses, OR = 0.68, Z = -5.129, p < 

.001. The results were similar for Experiment 2, with confidence ratings significantly higher in the 

final compared to the initial response stage, OR = 1.30, Cohen’s d = 0.14, 95% CI [0.12, 0.17]. 

Insight solutions also showed higher confidence compared to non-insight solutions, OR = 1.86, 

Cohen’s d = 0.34, 95% CI [0.29, 0.40]. The interaction between insight and response stage was 

again significant, OR = 0.92, Cohen’s d = -0.05, 95% CI [-0.07, -0.02]. Post-hoc tests showed that 

the effect of response stage on confidence was significant both for non-insight responses, OR = 

0.50, Z = -10.47, p < .001, and for insight responses, OR = 0.70, Z = -4.64, p < .001. Overall, the 
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confidence results indicate that the effect of response stage was smaller for insight responses, as 

participants already had high confidence in the initial response stage for insight responses. 

In addition, insight problem-solving was also associated with shorter response times, both 

in the initial (Experiment 1: M insight = 4.4 s vs. M non-insight = 5.5 s; Experiment 2: M insight = 

3.6 s vs. M non-insight = 4.3 s) and the final response stage (Experiment 1: M insight = 9.3 s vs. M 

non-insight = 22.5 s; Experiment 2: M insight = 7.6 s vs. M non-insight = 20 s). Fig. A.1b 

summarizes those findings.  

To test these results statistically, we used a log-linear mixed-effects model on reaction times 

as a function of insight, response stage, and their interaction using sum coding, separately for 

Experiment 1 and Experiment 2. Results from Experiment 1 showed that participants were 

significantly slower in the final than in the initial response stage, exp(β) = 1.26, t(3275.26) = 20.19, 

p < .001, Cohen’s d = 0.81, 95% CI [0.73, 0.89], and significantly faster for insight compared to 

non-insight responses, exp(β) = 0.85, t(101.32) = -8.32, p < .001, Cohen’s d = -0.54, 95% CI [-

0.69, -0.39]. The interaction term between insight and response stage was also significant, 

indicating that the effect of response stage was smaller for insight responses, exp(β) = 0.85, 

t(3259.97) = -14.64, p < .001, Cohen’s d = -1.05, 95% CI [-1.19, -0.9]. Post-hoc tests showed that 

the effect of response stage on reaction times was significant both for non-insight responses, 

t(3268) = -26.13, p < .001, and for insight responses, t(3263) = -3.61, p < .001. The results were 

similar for Experiment 2, with participants significantly slower in the final compared to the initial 

response stage, exp(β) = 1.29, t(2499.43) = 19.95, p < .001, Cohen’s d = 0.81, 95% CI [0.73, 0.90], 

and significantly faster for insight compared to non-insight responses, exp(β) = 0.84, t(101.78) = -

7.25, p < .001, Cohen’s d = 0.54, 95% CI [0.39, 0.70]. The interaction between insight and response 

stage was also significant, exp(β) = 0.82, t(2491.69) = -15.28, p < .001, Cohen’s d = -1.25, 95% CI 
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[-1.42, -1.09]. Post-hoc tests showed that the effect of response stage on reaction times was 

significant both for non-insight responses, t(2474) = -27.18, p < .001, and for insight responses, 

t(2489) = -3.00, p = .0027. Insight problem-solving was thus associated with higher confidence 

and faster reaction times in both experiments, consistent with the possibility that insight may 

account for sound intuition in our results.  

 

 

Figure A.1. Behavioral correlates of insight in Experiments 1 and 2. a) Response confidence as a 
function of response stage and solution type. b) Logged reaction time as a function of response 
stage and solution type. c) Accuracy as a function of response stage and solution type. d) By-item 
proportion of “11” and “01” responses as a function of the proportion of insight in the initial 
response stage (“11” responses) and in the final response stage (“01” responses). In the boxplots, 
the lower and upper hinges correspond to the first and third quartiles, and the middle line shows 
the median. The lower (resp. upper) whiskers extend from the hinges to the smallest (resp. largest) 
value no further than 1.5 times the interquartile range. Overlaid black dots represent the mean, and 
black error bars are standard errors of the mean. 
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A central question revolves around whether insight solutions are affected by the initial stage 

of the paradigm compared to non-insight solutions. Indeed, if insight does not rely on Type 2, 

deliberate processes, insight responses should not (or less) be affected by the constraints of the 

initial response stage where deliberation is minimized. Fig. A.1c provides a summary of the initial 

and final accuracy as a function of solution type. However, at the item level, the proportion of 

reported initial insight responses was almost perfectly correlated with the proportion of “11” 

responses in Experiment 1, r(22) = .97, p < .001, 95% CI [.94, .99], as well as in Experiment 2, 

r(22) = .96, p < .001, 95% CI [.92, .98]. The proportion of final insight did not correlate with the 

proportion of “01” responses in Experiment 1, r(22) = -.14, p = .50, 95% CI [-.52, .28], or in 

Experiment 2, r(22) = -.14, p = .50, 95% CI [-.52, .28]. This indicates that the simpler a problem 

was from the initial stage, the more participants tended to report solving it through insight, while 

solving a problem after an initial incorrect response (or no response at all) was not associated with 

insight (Fig. A.1d). Thus, any analysis testing the relationship between insight problem-solving 

and sound intuiting should take this item-level confound into account. 

To test the theoretical possibility that problems solved through insight would be less 

affected by the initial response stage, we built a mixed-effect logistic model on accuracy using 

insight, response stage, and their interaction as fixed effects using sum coding. We also added the 

final difficulty of the item as a control variable in the model since insight is positively correlated 

with item difficulty. In Experiment 1, there was a significant effect of insight on accuracy, OR = 

4.79, p < .001, Cohen’s d = 0.86, 95% CI [0.71, 1.05], response stage, OR = 2.00, p < .001, Cohen’s 

d = 0.38, 95% CI [0.29, 0.48], as well as item difficulty, OR = 1.07, p < .001, Cohen’s d = 0.04, 

95% CI [0.03, 0.04]. However, the interaction between insight and response stage did not reach 

significance, OR = 0.90, p = .19, Cohen’s d = -0.06, 95% CI [-0.14, 0.04]. In Experiment 2, the 
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results were identical. There was a significant effect of insight on accuracy, OR = 4.29, p < .001, 

Cohen’s d = 0.80, 95% CI [0.71, 0.91], response stage, OR = 2.22, p < .001, Cohen’s d = 0.44, 95% 

CI [0.35, 0.55], as well as item difficulty, OR = 1.06, p < .001, Cohen’s d = 0.03, 95% CI [0.03, 

0.03]. Once again, the interaction between insight and response stage did not reach significance, 

OR = 1.04, p = .68, Cohen’s d = 0.02, 95% CI [-0.07, 0.12]. Thus, although insight was consistently 

associated with higher accuracy, we did not find evidence supporting a distinct impact of the 

cognitive load and response deadline on insight solutions compared to non-insight solutions.  

Overall, these findings suggest that insight problem-solving does not depend on distinct, 

intuitive cognitive mechanisms that could drive sound intuition. Rather, insight seems to index 

higher response fluency, characterized by easier problems, higher confidence, and faster responses. 
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E. Mixed-Effects Models in the CRA task 

In the CRA, we used (generalized) linear mixed models, allowing trial-by-trial analysis while 

accounting for variation across both participants and items. Unlike traditional ANOVA, mixed 

models provide greater flexibility by avoiding the need for prior averaging, minimizing Type I 

error, managing unbalanced datasets, and improving predictive precision and generalization 

through partial pooling, where data for individual participants or items is informed by the entire 

dataset (Baayen et al., 2008). 

To analyze accuracy and direction of change, we used binomial generalized mixed models 

(Bolker et al., 2009). For the supplementary models on response confidence, we used mixed-effects 

beta regression (Verkuilen & Smithson, 2012), with adjustments to keep data within a .005 to .995 

range before back-transforming it to its original scale (Smithson & Verkuilen, 2006). For reaction 

times analyses, the trials could be censored at the deadline in the initial response stages of 

Experiment 1 and 2. To account for this, we used censored (Tobit) log-normal mixed-effects 

models (Bürkner, 2017), treating trials hitting the deadline as right-censored rather than excluding 

them. For the exploratory insight reaction time analyses, insight ratings were only available when 

participants provided a valid response, so trials over the response deadline in the initial response 

stage were excluded by definition. These analyses were therefore conducted with conventional log-

transformed linear mixed models, with results back-transformed to seconds for interpretation. 

To determine the optimal random structure for each analysis, we first identified the maximal 

model supported by the data, followed by backward stepwise elimination using the likelihood ratio 

test to maximize statistical power (Matuschek et al., 2017). For the binomial models, we assessed 

the significance of fixed effects using parametric bootstrapping with 1000 iterations (Booth, 1995). 

For reaction times, we evaluated fixed-effect significance with the Kenward-Roger t-test (Kenward 
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& Roger, 1997). Censored reaction times models were estimated in a Bayesian framework, due to 

convergence issues in the frequentist framework. We used weakly informative priors using four 

chains of 4,000 iterations each (2,000 warm-up), yielding 8,000 post–warm-up draws in total. 

Posterior estimates are reported with 95% credible intervals (CrI) and posterior probabilities of 

direction (pd). In the case of the supplementary mixed-effects beta regression models on 

confidence, we used Wald Z-tests to assess significance due to convergence issues encountered 

during the bootstrapping procedure. 

In models with interaction terms, we applied sum coding as our contrast scheme. Significant 

interactions were further explored via post-hoc tests on estimated marginal means, with Holm-

Bonferroni correction for multiple comparisons. For generalized mixed models, effect sizes are 

reported by converting odds ratios to Cohen’s d (Borenstein et al., 2009). 

We used the following R packages for the mixed-effects models analyses: bayestestR 

(Makowski et al., 2019), brms (Bürckner, 2017), buildmer (Voeten, 2020), emmeans (Lenth et al., 

2019), glmmTMB (Brooks et al., 2017), lmerTest (Kuznetsova et al., 2017), lme4 (Bates et al., 

2014) and parameters (Lüdecke et al., 2020). 
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F. Semantic Network Modelling 

F.1. Semantic Networks Construction 

To estimate the semantic networks based on the animal fluency task data, we used three out of 

the four methods available in the SemNet package in R (Christensen & Kenett, 2023): the 

Correlation-Based Network (CbN) method, the Pathfinder Network (PN) method and the Naive 

Random Walk (NRW) method. The Community Network method was excluded from our analyses, 

as the estimated networks did not significantly differ from randomly generated networks (see 

below). The networks were estimated separately for the two groups based on the median split of 

the proportion of “11” responses (i.e., “High 11” vs. “Low 11” group).  

In general, we used the default SemNet parameters but adjusted them when the estimated 

networks did not significantly differ from randomly generated ones. Below, we outline the methods 

and parameters used for network estimation (for a detailed explanation of these methods, see Zemla 

& Austerweil, 2018): 

1) The CbN method builds a semantic network by analyzing co-occurrences within a binary 

response matrix, where rows represent individual participants and columns represent 

unique animal names given across participants in the verbal fluency task. Each cell in the 

matrix is filled with a “1” if the corresponding participant mentioned the animal and a “0” 

otherwise. Responses not provided by at least three participants per group were excluded 

to control for confounding factors such as the number of nodes and edges across groups 

(Borodkin et al., 2016). Additionally, we included only the responses given across both 

groups to ensure that our comparison was based solely on structural differences within the 

same nodes across the two networks. We then estimated the networks based on the co-
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occurrence of responses across the group. Here, we used Pearson’s pairwise correlation to 

compute the pairwise similarities between each column (e.g., Kenett et al., 2013), which 

resulted in an association matrix. The triangulated maximally filtered graph (TMFG; 

Christensen et al., 2018a) was subsequently applied to the association matrix to ensure that 

only the strongest, most relevant connections were maintained while every node remained 

connected in the network. 

2) The PN method (Quirin et al., 2008) also creates a network from the binary response matrix. 

Here again, we only kept the responses that were given across both groups, ensuring that 

our comparison would be based on structural differences in the organization of the nodes 

between the two networks. The PN method uses a proximity measure such as Euclidean 

distance to build a proximity matrix. It then keeps the path which has the shortest distance 

between every pair of nodes to build a network that emphasizes minimal distances. The 

method is parameterized by the two parameters q and r, which govern the number of steps 

between nodes and the computation of distance, respectively. The SemNet package sets 

these two parameters to build the sparsest possible network (i.e., the one with the fewest 

number of edges) from the proximity matrix, following Zemla and Austerweil (2018). 

3) The NRW method (Jun et al., 2015) assumes that the fluency lists generated by the 

participants arise from an uncensored random walk, “stepping” from one node to another 

in the semantic network. The NRW method infers an edge between each adjacent pair of 

responses in the participants’ fluency lists, thereby assuming that adjacent responses have 

a higher likelihood of being interrelated. To minimize the number of spurious connections 

in the network, we applied a threshold to remove pairs that appeared less than three times 

across participants to have an edge in the network (Lerner et al., 2009). In the NRW method, 

because response order is important, removing responses from participants’ fluency lists to 
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control for the differing number of responses between groups is not possible. However, the 

difference in verbal fluency between the “High 11” group (M = 36.9 words) and the “Low 

11” group (M = 39.4 words) unexpectedly favored the “Low 11” group, was minimal and 

statistically non-significant, t(94.64) = 1.07, p = .28. Verbal fluency should thus not bias 

our NRW findings–and even less so in the expected direction of our predictions. 

F.2. Comparison to Random Networks 

To ensure that the generated networks had different structures from random networks with 

the same number of edges, nodes, and degree sequence (i.e., connections per node), we compared 

the network metrics (i.e., ASPL, CC, and Q) of our networks against those of randomly generated 

networks. For each network estimation method and response group (i.e., “Low 11” and “High 11”), 

we generated 1000 random networks to create a sampling distribution of the network metrics to 

compute a p-value for the original group's network measures (Kenett et al., 2013). A significant 

result indicates that the network’s structure differs from that of an equivalent random network for 

this particular network metric. 

The results of this analysis revealed that the generated networks significantly differed from 

randomly generated networks for both groups across all network estimation methods and metrics 

(all p < .001). However, this was not the case for the Community Network method on the Q and 

ASPL metrics, which led us to exclude this method from our analyses. 

F.3. Case-wise Bootstrap Analysis 

Following Luchini et al. (2023), we used case-wise bootstrap analysis (Efron, 1979) to 

assess the difference in the structure of the semantic memory network between the “High 11” and 

the “Low 11” groups. Since the group-level estimation of network metrics provides only a single 
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value per group, the bootstrapping approach allows us to test whether any differences between the 

two groups are significant. We used the with-replacement bootstrapping of the SemNet package 

with 1000 iterations to compute the three network metrics (i.e., ASPL, CC, and Q) for each 

resampled group’s network. Independent-samples t-tests were then conducted for each network 

metric to assess whether the differences between the two groups were significant. The results are 

presented in the tables A.2-4. 

 

Table A.2. Independent t-tests results comparing network metrics between the “Low 11” and the 

“High 11” groups for the Correlation-Based Network method. 

Variable Mean Low 11 (SD) Mean High 11 (SD) 95% CI t(1998) p-value d Direction 

ASPL 4.405 (0.401) 4.346 (0.41) [0.023, 0.094] 3.23 .001 0.144 Low 11 > High 11 

CC 0.704 (0.007) 0.707 (0.007) [-0.003, -0.002] -7.58 < .001 0.339 Low 11 < High 11 

Q 0.709 (0.013) 0.709 (0.013) [-0.001, 0.001] -0.23 .82 0.01 Low 11 = High 11 

Note. ASPL: Average Shortest Path Length; CC: Clustering Coefficient; Q: Modularity; CI = 

Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC 

indicates greater interconnectivity within the network, and a higher Q indicates stronger 

modularity. p-values less than .05 are shown in bold. 
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Table A.3. Independent t-tests results comparing network metrics between the “Low 11” and the 

“High 11” groups for the Pathfinder Network method. 

Variable Mean Low 11 (SD) Mean High 11 (SD) 95% CI t(1998) p-value d Direction 

ASPL 3.674 (0.212) 3.553 (0.22) [0.102, 0.14] 12.53 < .001 0.56 Low 11 > High 11 

CC 0.346 (0.03) 0.387 (0.035) [-0.043, -0.038] -27.84 < .001 1.25 Low 11 < High 11 

Q 0.52 (0.046) 0.454 (0.058) [0.062, 0.071] 28.63 < .001 1.28 Low 11 > High 11 

Note. ASPL: Average Shortest Path Length; CC: Clustering Coefficient; Q: Modularity; CI = 

Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC 

indicates greater interconnectivity within the network, and a higher Q indicates stronger 

modularity. p-values less than .05 are shown in bold. 

 

Table A.4. Independent t-tests results comparing network metrics between the “Low 11” and the 

“High 11” groups for the Naïve Random Walk method. 

Variable Mean Low 11 (SD) Mean High 11 (SD) 95% CI t(1998) p-value d Direction 

ASPL 3.624 (0.24) 3.606 (0.446) [-0.013, 0.05] 1.13 .26 0.05 Low 11 = High 11 

CC 0.084 (0.014) 0.086 (0.014) [-0.003, -0.001] -3.04 .002 0.14 Low 11 < High 11 

Q 0.459 (0.026) 0.439 (0.03) [0.018, 0.023] 16.47 < .001 0.74 Low 11 > High 11 

Note. ASPL: Average Shortest Path Length; CC: Clustering Coefficient; Q: Modularity; CI = 

Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC 

indicates greater interconnectivity within the network, and a higher Q indicates stronger 

modularity. p-values less than .05 are shown in bold. 
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F.4. Effect Sizes Pooling 

As shown in Tables A.2-4, the results of our semantic network analyses did not always 

converge. Specifically, the CbN method result for the Q metric was non-significant, as was the 

NRW method result for the ASPL metric. We thus computed pooled standardized effect sizes, 

accounting for the dependence between these measures (Borenstein et al., 2021), as reported in 

Table A.5. We corrected for the fact that the effect sizes are likely correlated across methods by 

using the aggregate function in the metafor package in R (Viechtbauer, 2010). Given that the 

degree of correlation between our network methods is unknown, we assumed a conservative 

correlation of ρ = .8 for sampling errors within clusters. Importantly, sensitivity analyses across the 

full range of possible correlation values did not change the results in terms of significance. 

Table A.5. Aggregated semantic memory network metrics comparison between the “Low 11” and 

the “High 11” groups. 

Parameter Hedge's g 95% CI Z p Direction 

ASPL -0.25 [-0.33, -0.17] -6.01 < .001 Low 11 > High 11 
CC 0.61 [0.52, 0.7] 13.62 < .001 Low 11 < High 11 
Q -0.66 [-0.75, -0.57] -14.61 < .001 Low 11 > High 11 

 

Note. ASPL = Average Shortest Path Length; CC = Clustering Coefficient; Q = Modularity; CI = 

Confidence Interval. A higher ASPL indicates a more spread-out network structure, a higher CC 

indicates greater interconnectivity within the network, and a higher Q indicates stronger 

modularity. A positive effect size indicates that the specific component was larger in the High “11” 

group network, while a negative effect size indicates it was smaller. Effect sizes were aggregated 

assuming an inter-method correlation of ρ = .8. p-values less than .05 are shown in bold.   



 65 

  

G. Estimated Models 

In this section, we report the models presented in the results section of the paper. Although 

we did not preregister specific analyses, our preregistration indicated that we would analyze 

accuracy and direction of change based on item difficulty (three levels: easy, medium, and hard). 

However, we eventually chose to use semantic similarity between cue words and the solution word 

in each CRA item as a continuous proxy for item difficulty instead, given its theoretical relevance. 

 

Table A.6. Binomial generalized mixed-effects model on accuracy as a function of response stage 

and experiment, using sum coding. 

accuracy ~ 1 + response_stage + experiment + response_stage:experiment  

+ (1 + response_stage | subject) + (1 | item_number) 

 
Predictors OR 95% CI p.value 

Intercept 1.32  [0.65, 2.71]   .43 

Response stage 1.89  [1.74, 2.04]  < .001 

Experiment 0.98 [0.85, 1.12] .44 

Response stage:Experiment 1.05 [0.98, 1.13] .17 
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Random effects 

Group Parameter SD 

Subject (Intercept) 0.86 

Item (Intercept) 1.79 

Subject Response stage 0.24 

Subject Cor (Intercept x Response stage) 0.18 

 

Note. p-values and confidence intervals were obtained using parametric bootstrap. OR = odds ratio. 

An OR superior/inferior to 1 indicates the magnitude of the increase/decrease in the odds of giving 

the correct response. 
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Table A.7. Binomial generalized mixed-effects model on the probability of giving a “11” response 

(vs. a “01” response) contrasting Experiment 1 and Experiment 2, using dummy coding. 

accuracy ~ 1 + experiment + (1 | subject) + (1 | item) 

 
Predictors OR 95% CI p.value 

Intercept (Experiment 1) 1.98  [1.13, 3.54]   .014 

Experiment 2 0.87  [0.62, 1.21]  .36 

 

Random effects 

Group Parameter SD 

Subject (Intercept) 0.90 

Item (Intercept) 1.24 

 

Note. p-values and confidence intervals were obtained using parametric bootstrap. This model is 

based only on trials with a final correct response (i.e., “11” or “01” responses). OR = odds ratio. 

An OR superior/inferior to 1 indicates the magnitude of the increase/decrease in the odds of giving 

a “11” response vs. a “01” response. 
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Table A.8. Linear regression model output for the by-subject proportion of “11” responses as a 

function of forward flow, education level and verbal fluency in Experiment 2. 

 

Predictors Estimates 95% CI p.value 

(Intercept) 40.60 [18.74, 62.47] < .001 

Forward Flow 6.01 [0.92, 11.09] .021 

Education Level 1.12 [-3.98, 6.23] .66 

Verbal Fluency 0.13 [-0.29, 0.55] .54 

Observations: 98 

R2 / R2 adjusted: 0.10 / 0.07 
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H. Confidence Analyses 

H.1. Intuitive Error Sensitivity 

Are participants sensitive to their errors in the initial response stage of the paradigm? In 

Experiment 1, participants reported higher confidence for correct responses (M = 77.5, SD = 21.1) 

compared to incorrect responses (M = 21.6, SD = 17.4) in the initial stage. A beta regression mixed-

effects model on the initial confidence as a function of accuracy using dummy coding confirmed 

that the initial confidence ratings on correctly solved CRA puzzles were significantly higher than 

those for incorrect responses, OR = 10.26, p < .001, Cohen’s d = 1.28, 95% CI [1.10, 1.46]. The 

results were similar in Experiment 2, where participants also reported a higher confidence for 

correct responses (M = 77.2, SD = 26.1) compared to incorrect responses (M = 24.2, SD = 20), OR 

= 8.09, p < .001, Cohen’s d = 1.15, 95% CI [0.98, 1.33]. Participants were thus able to recognize 

that they had not converged on the correct solution in the CRA, even when deliberation was 

minimized. 

H.2. Initial Confidence and Response Change 

Another question concerns whether lower confidence in the initial response stage predicts 

higher accuracy in the final response stage. To test this, we examined initial confidence ratings as 

a function of the direction of change. Crucially, we focused on initially incorrect responses (i.e., 

“00” or “01” responses) to control for initial accuracy. If lower confidence in the initial stage leads 

to higher final accuracy, we should observe lower confidence for “01” responses compared to “00” 

responses. 

The observed confidence differences were small in both experiments in Experiment 1 ("00" 

responses: M = 22.3, SD  = 18.9; "01" responses: M = 20.9, SD  = 20.4) and in Experiment 2 ("00" 
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responses: M = 22.6, SD  = 19; "01" responses: M = 23.8, SD  = 23.2). To test this statistically, we 

built two mixed-effects logistic regression models to predict final accuracy as a function of initial 

confidence, subsetting on incorrect initial responses (e.g., "00" or "01" responses). In Experiment 

1, initial confidence did not significantly predict final accuracy, OR = 0.93, p = .52, Cohen’s d = -

0.04, 95% CI [-0.17, 0.08]. The pattern was the same in Experiment 2, OR = 0.94, p = .62, Cohen’s 

d = -0.04, 95% CI [-0.18, 0.11]. Thus, in both experiments, initial confidence did not predict final 

accuracy. 

  



 71 

  

I. Comparison of Item Difficulty Across Studies 

A potential criticism of our work could be that we only observed sound intuiting due to the 

selection of easier items than usually found in the literature. To address this concern, we can 

directly compare our results to other studies using the CRA. We computed the combined average 

accuracy in the final response stage across both of our studies. The outcome (61%) was higher than 

the accuracy reported in Kounios et al. (2006) (46.2%) and Chein and Weisberg (2014) (42%), 

similar to the accuracy reported in Cranford and Moss (2012) (55%), and lower than the accuracy 

reported in Stuyck et al. (2021) (78%) or Stuyck et al. (2022) (No-Load condition; 79,9%). In 

addition, we meticulously checked responses for spelling accuracy before coding them as correct 

or incorrect, and we acknowledged alternative responses as valid solutions to problems when they 

were correct (see Appendix H). This may have further boosted the accuracy of our studies. 
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J. Impact of Recoded Missed Deadlines on Intuitive Performance 

It is possible that participants safeguarded their performance on the CRA over the deadline 

or the cognitive load task in the initial response stage. Since we excluded trials where participants 

failed to answer before the deadline or to give a correct answer to the cognitive load task, such a 

response strategy coupled with the trials’ exclusion could lead to an overestimation of correct 

intuitive responses.  

To investigate such a possibility, we correlated the by-item proportion of missed deadlines 

and loads with item difficulty (computed as 100 minus the mean accuracy in the final response 

stage Results showed that indeed the item difficulty correlated strongly with the proportion of 

missed deadlines, r(22) = .84, p < .001, 95% CI [.66, .93] in Experiment 1 and r(22) = .78, p < 

.001, 95% CI [.56, .90] in Experiment 2. However, item difficulty did not correlate significantly 

with the proportion of failed cognitive loads, r(22) = .19, p = .37, 95% CI [-.23, 0.55] in Experiment 

1 and r(22) = .08, p = .70, 95% CI [-.33, 0.47] in Experiment 2. This result indicates that participants 

missed more deadlines when the item was harder, possibly suggesting that participants safeguarded 

their performance on the CRA at the expense of the time constraint.  

We thus performed an additional analysis where we recomputed the mean non-correction 

rate while conservatively coding the missed deadline trials as incorrect responses. The average 

non-correction rate was slightly lower in this conservative analysis: M = 70.4% (SD = 17.8) in 

Experiment 1 and M = 63.6% (SD = 21.1) in Experiment 2.  

To statistically assess whether there was a higher occurrence of sound intuiting (“11”) as 

opposed to correct deliberate responses following an initial incorrect response (“01”), we focused 

exclusively on final correct responses, excluding “00” and “10” trials. We then built a mixed-
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effects logistic regression model, which included random intercepts for both participants and items, 

with the experiment as a fixed effect. We used a dummy variable to code whether a trial was a “01” 

response (coded as 0) or a “11” response (coded as 1). Importantly, the estimated non-correction 

rates from the model were significantly different from 0 both for Experiment 1, M = 64%, 95% CI 

[51, 75] and Experiment 2, M = 56%, 95% CI [42, 68]. The effect of experiment was significant, 

OR = 0.71, p = .018, Cohen’s d = -0.19, 95% CI [-0.36, -0.04], indicating that there was a small 

but significant decrease in the non-correction rate of Experiment 2 compared to Experiment 1. 

Thus, despite this slight decrease, our findings show that when participants gave a correct answer 

in the final response stage of the paradigm, they had already given a correct answer in the initial 

response stage most of the time. This finding confirms the robustness of our results, even when 

recoding the missed deadlines trials as incorrect. 
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